找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis of Toeplitz Operators; Albrecht B?ttcher,Bernd Silbermann Book 19901st edition Springer-Verlag Berlin Heidelberg 1990 Banach alge

[復(fù)制鏈接]
樓主: Fuctionary
11#
發(fā)表于 2025-3-23 12:54:57 | 只看該作者
https://doi.org/10.1007/978-3-663-13498-5We begin by applying Theorem 3.42 and Corollary 3.44 to the Fredholm theory of Toeplitz operators. Although this chapter is concerned with Toeplitz operators on H. ? 1., we first state some results for Toeplitz operators on H. and 1., because there do not arise any substantial difficulties when passing from the case . = 2 to the case . ≠ 2.
12#
發(fā)表于 2025-3-23 17:53:19 | 只看該作者
13#
發(fā)表于 2025-3-23 20:52:08 | 只看該作者
Leistungszusage bei Unsicherheit,Let 1 ≤ . < ∞ and let . be a subset of ?. (. = 1, 2, ...).
14#
發(fā)表于 2025-3-24 00:02:59 | 只看該作者
Leistungszusage bei Sicherheit,Throughout this chapter we let L. and L. (1≤P≤∞) refer to the L. spaces of Lebesgue measure on ? and ?., respectively. The L. spaces on the unit circle will be denoted by L.(T). The operator . defined by.:L.→L.., . ? . | ?.is clearly bounded for 1 ≤ . ≤ ∞.
15#
發(fā)表于 2025-3-24 04:08:11 | 只看該作者
16#
發(fā)表于 2025-3-24 09:42:50 | 只看該作者
Basic theory,If a ∈ L∞ and 1
17#
發(fā)表于 2025-3-24 11:15:12 | 只看該作者
Symbol analysis,Let . be a closed subset of . = .(L.) and let . ∈ L.. The matrix function . is called . if there exist a real number . > 0 and two invertible matrices ., . ∈ ?. such that Re (.(.) .) ≧ . for all . ∈ ., that is,.and . is said to be . if.that is, if each matrix in the closed convex hull of .(.) is invertible.
18#
發(fā)表于 2025-3-24 18:19:45 | 只看該作者
Toeplitz operators on H2,We begin by applying Theorem 3.42 and Corollary 3.44 to the Fredholm theory of Toeplitz operators. Although this chapter is concerned with Toeplitz operators on H. ? 1., we first state some results for Toeplitz operators on H. and 1., because there do not arise any substantial difficulties when passing from the case . = 2 to the case . ≠ 2.
19#
發(fā)表于 2025-3-24 19:17:47 | 只看該作者
Toeplitz operators on l,,We have already settled the Fredholm theory of the operators in alg (Corollaries 4.7 and 4.8) and stated a localization result for Toeplitz operators on l. (Theorem 2.95). This chapter is devoted to some more delicate questions of the l.. theory of Toeplitz operators.
20#
發(fā)表于 2025-3-25 00:29:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-28 08:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新丰县| 民丰县| 许昌县| 宁陵县| 来安县| 运城市| 临沂市| 铜川市| 肃宁县| 永吉县| 涡阳县| 莱阳市| 理塘县| 陇南市| 泸水县| 勐海县| 乌什县| 潮安县| 定南县| 珲春市| 汤原县| 永泰县| 涿州市| 宜川县| 郸城县| 怀安县| 泾阳县| 丰镇市| 赤壁市| 遵化市| 泸溪县| 锡林郭勒盟| 石门县| 射洪县| 福鼎市| 县级市| 河北省| 佳木斯市| 无为县| 高邮市| 宜阳县|