找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis of Spherical Symmetries in Euclidean Spaces; Claus Müller Book 1998 Springer Science+Business Media New York 1998 Fourier transfo

[復(fù)制鏈接]
查看: 40194|回復(fù): 43
樓主
發(fā)表于 2025-3-21 17:53:46 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱(chēng)Analysis of Spherical Symmetries in Euclidean Spaces
影響因子2023Claus Müller
視頻videohttp://file.papertrans.cn/157/156446/156446.mp4
發(fā)行地址Self-contained work *.Much material published here for the first time * Uses elementary concepts of the theory of invariants of orthogonal groups and harmonics.Results treated in an appendix to avoid
學(xué)科分類(lèi)Applied Mathematical Sciences
圖書(shū)封面Titlebook: Analysis of Spherical Symmetries in Euclidean Spaces;  Claus Müller Book 1998 Springer Science+Business Media New York 1998 Fourier transfo
影響因子This book gives a new and direct approach into the theories of special functions with emphasis on spherical symmetry in Euclidean spaces of ar- bitrary dimensions. Essential parts may even be called elementary because of the chosen techniques. The central topic is the presentation of spherical harmonics in a theory of invariants of the orthogonal group. H. Weyl was one of the first to point out that spherical harmonics must be more than a fortunate guess to simplify numerical computations in mathematical physics. His opinion arose from his occupation with quan- tum mechanics and was supported by many physicists. These ideas are the leading theme throughout this treatise. When R. Richberg and I started this project we were surprised, how easy and elegant the general theory could be. One of the highlights of this book is the extension of the classical results of spherical harmonics into the complex. This is particularly important for the complexification of the Funk-Hecke formula, which is successfully used to introduce orthogonally invariant solutions of the reduced wave equation. The radial parts of these solutions are either Bessel or Hankel functions, which play an important role
Pindex Book 1998
The information of publication is updating

書(shū)目名稱(chēng)Analysis of Spherical Symmetries in Euclidean Spaces影響因子(影響力)




書(shū)目名稱(chēng)Analysis of Spherical Symmetries in Euclidean Spaces影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Analysis of Spherical Symmetries in Euclidean Spaces網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Analysis of Spherical Symmetries in Euclidean Spaces網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Analysis of Spherical Symmetries in Euclidean Spaces被引頻次




書(shū)目名稱(chēng)Analysis of Spherical Symmetries in Euclidean Spaces被引頻次學(xué)科排名




書(shū)目名稱(chēng)Analysis of Spherical Symmetries in Euclidean Spaces年度引用




書(shū)目名稱(chēng)Analysis of Spherical Symmetries in Euclidean Spaces年度引用學(xué)科排名




書(shū)目名稱(chēng)Analysis of Spherical Symmetries in Euclidean Spaces讀者反饋




書(shū)目名稱(chēng)Analysis of Spherical Symmetries in Euclidean Spaces讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:53:09 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:49:49 | 只看該作者
Analysis of Spherical Symmetries in Euclidean Spaces
地板
發(fā)表于 2025-3-22 07:34:44 | 只看該作者
Book 1998y dimensions. Essential parts may even be called elementary because of the chosen techniques. The central topic is the presentation of spherical harmonics in a theory of invariants of the orthogonal group. H. Weyl was one of the first to point out that spherical harmonics must be more than a fortuna
5#
發(fā)表于 2025-3-22 10:13:30 | 只看該作者
6#
發(fā)表于 2025-3-22 16:58:06 | 只看該作者
7#
發(fā)表于 2025-3-22 19:18:53 | 只看該作者
8#
發(fā)表于 2025-3-23 00:32:33 | 只看該作者
The Specific Theories,ts. An explicit orthogonal basis of . (q) was found by Laplace for . = 3. His discovery can be easily extended to higher dimensions. We add a description of the isotropically invariant associated spaces.
9#
發(fā)表于 2025-3-23 01:35:49 | 只看該作者
https://doi.org/10.1007/978-1-4899-1480-4ts. An explicit orthogonal basis of . (q) was found by Laplace for . = 3. His discovery can be easily extended to higher dimensions. We add a description of the isotropically invariant associated spaces.
10#
發(fā)表于 2025-3-23 09:14:01 | 只看該作者
Introduction, spherical symmetry. The classical concepts of the tensor calculus and the formalisms of the theory of differential forms are both used as we go along, the results are stated, but no proofs of general theorems are presented because several good books devoted to the subject are available.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 03:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
郎溪县| 曲松县| 南平市| 阳西县| 松溪县| 当涂县| 溆浦县| 广东省| 调兵山市| 湟中县| 大洼县| 成安县| 大兴区| 鄯善县| 西畴县| 建始县| 婺源县| 东乌珠穆沁旗| 财经| 景谷| 太保市| 赤水市| 嘉禾县| 怀安县| 惠州市| 玛纳斯县| 崇左市| 景泰县| 秭归县| 庆城县| 夏河县| 体育| 托克逊县| 吉林省| 枣强县| 准格尔旗| 铜鼓县| 西峡县| 合山市| 铁力市| 山阴县|