找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis of Divergence; Control and Manageme William O. Bray,?aslav V. Stanojevi? Book 1999 Birkh?user Boston 1999 Fourier transform.Sequen

[復制鏈接]
樓主: 無緣無故
31#
發(fā)表于 2025-3-26 23:18:20 | 只看該作者
32#
發(fā)表于 2025-3-27 05:03:43 | 只看該作者
Digitalisierung als Transformation? flat curves in the plane. Our results, obtained by scaling, can be used to recover, up to the endpoints, the results previously obtained in [4], [1], and [2]. We also prove some three dimensional analogs of those results.
33#
發(fā)表于 2025-3-27 06:16:50 | 只看該作者
34#
發(fā)表于 2025-3-27 11:04:19 | 只看該作者
35#
發(fā)表于 2025-3-27 14:28:54 | 只看該作者
36#
發(fā)表于 2025-3-27 21:47:34 | 只看該作者
37#
發(fā)表于 2025-3-27 23:08:43 | 只看該作者
38#
發(fā)表于 2025-3-28 02:15:35 | 只看該作者
Multipliers and square functions for ,, spaces over Vilenkin groups. by Sunouchi in the dyadic case in 1951. For the dyadic group G it is proved that the function with values φ(k) = k2. on the j. dyadic block of G is an H. - multiplier with respect to the Walsh functions {ω. : 0 ≤ k ≤ ∞}. This theorem implies that Sunouchi’s square function S. characterizes H., sol
39#
發(fā)表于 2025-3-28 07:49:48 | 只看該作者
40#
發(fā)表于 2025-3-28 12:34:28 | 只看該作者
Scaling properties of infinitely flat curves and surfaces flat curves in the plane. Our results, obtained by scaling, can be used to recover, up to the endpoints, the results previously obtained in [4], [1], and [2]. We also prove some three dimensional analogs of those results.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 04:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
汶上县| 武强县| 芒康县| 汉寿县| 隆子县| 南雄市| 新兴县| 侯马市| 卓尼县| 济源市| 荥经县| 沽源县| 乌恰县| 永宁县| 集贤县| 封丘县| 浏阳市| 东方市| 呼玛县| 偏关县| 诏安县| 廊坊市| 滦南县| 务川| 休宁县| 辽宁省| 溧阳市| 宜阳县| 四会市| 新平| 鄂温| 大悟县| 宁津县| 襄汾县| 新沂市| 金湖县| 铜川市| 台北市| 讷河市| 娱乐| 赣州市|