找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis of Discretization Methods for Ordinary Differential Equations; Hans J. Stetter Book 1973 Springer-Verlag Berlin Heidelberg 1973 A

[復(fù)制鏈接]
樓主: Hoover
21#
發(fā)表于 2025-3-25 04:28:10 | 只看該作者
22#
發(fā)表于 2025-3-25 07:34:03 | 只看該作者
23#
發(fā)表于 2025-3-25 13:11:48 | 只看該作者
24#
發(fā)表于 2025-3-25 18:33:47 | 只看該作者
Linear Multistep Methods,ituation is sufficiently interesting and by no means trivial. Many of the results obtained will serve as background material in the treatment of more general classes of multistep methods in Chapter 5.
25#
發(fā)表于 2025-3-25 21:54:44 | 只看該作者
https://doi.org/10.1007/978-3-662-36828-2nd their applications, although we have not elaborated on this. The chapter is concluded by a few remarks on the practical aspects of “solving” ordinary differential equations by discretization methods.
26#
發(fā)表于 2025-3-26 03:11:05 | 只看該作者
27#
發(fā)表于 2025-3-26 05:18:02 | 只看該作者
Lisa Unterberg,Miguel Zulaica y Mugicaituation is sufficiently interesting and by no means trivial. Many of the results obtained will serve as background material in the treatment of more general classes of multistep methods in Chapter 5.
28#
發(fā)表于 2025-3-26 09:10:02 | 只看該作者
Book 1973ical values of solutions to differential equations. Nearly all approaches to this task involve a "finitization" of the original differential equation problem, usually by a projection into a finite-dimensional space. By far the most popular of these finitization processes consists of a reduction to a
29#
發(fā)表于 2025-3-26 15:36:14 | 只看該作者
Analysis of Discretization Methods for Ordinary Differential Equations
30#
發(fā)表于 2025-3-26 19:02:41 | 只看該作者
Book 1973heir discrete analogues is a very hard subject, and progress is consequently slow, the initial value problem for a system of first order ordinary differential equations lends itself so naturally to discretization that hundreds of numerical analysts have felt inspired to invent an ever-increasing num
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 08:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
奉化市| 安达市| 象州县| 鄢陵县| 安国市| 措勤县| 古田县| 双辽市| 武宣县| 博白县| 贞丰县| 华阴市| 盈江县| 仪陇县| 南川市| 麻江县| 芜湖市| 沈丘县| 秦安县| 江津市| 七台河市| 赤水市| 宜城市| 上虞市| 鄂托克旗| 黄陵县| 西藏| 固镇县| 舞阳县| 昭觉县| 新和县| 芮城县| 洛宁县| 九龙城区| 壶关县| 岳西县| 呼伦贝尔市| 同仁县| 甘孜| 商洛市| 岑溪市|