找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis of Discretization Methods for Ordinary Differential Equations; Hans J. Stetter Book 1973 Springer-Verlag Berlin Heidelberg 1973 A

[復(fù)制鏈接]
樓主: Hoover
21#
發(fā)表于 2025-3-25 04:28:10 | 只看該作者
22#
發(fā)表于 2025-3-25 07:34:03 | 只看該作者
23#
發(fā)表于 2025-3-25 13:11:48 | 只看該作者
24#
發(fā)表于 2025-3-25 18:33:47 | 只看該作者
Linear Multistep Methods,ituation is sufficiently interesting and by no means trivial. Many of the results obtained will serve as background material in the treatment of more general classes of multistep methods in Chapter 5.
25#
發(fā)表于 2025-3-25 21:54:44 | 只看該作者
https://doi.org/10.1007/978-3-662-36828-2nd their applications, although we have not elaborated on this. The chapter is concluded by a few remarks on the practical aspects of “solving” ordinary differential equations by discretization methods.
26#
發(fā)表于 2025-3-26 03:11:05 | 只看該作者
27#
發(fā)表于 2025-3-26 05:18:02 | 只看該作者
Lisa Unterberg,Miguel Zulaica y Mugicaituation is sufficiently interesting and by no means trivial. Many of the results obtained will serve as background material in the treatment of more general classes of multistep methods in Chapter 5.
28#
發(fā)表于 2025-3-26 09:10:02 | 只看該作者
Book 1973ical values of solutions to differential equations. Nearly all approaches to this task involve a "finitization" of the original differential equation problem, usually by a projection into a finite-dimensional space. By far the most popular of these finitization processes consists of a reduction to a
29#
發(fā)表于 2025-3-26 15:36:14 | 只看該作者
Analysis of Discretization Methods for Ordinary Differential Equations
30#
發(fā)表于 2025-3-26 19:02:41 | 只看該作者
Book 1973heir discrete analogues is a very hard subject, and progress is consequently slow, the initial value problem for a system of first order ordinary differential equations lends itself so naturally to discretization that hundreds of numerical analysts have felt inspired to invent an ever-increasing num
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 12:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沛县| 曲阳县| 云和县| 普洱| 朝阳县| 巴青县| 浪卡子县| 丰镇市| 塘沽区| 日土县| 亳州市| 高清| 文山县| 杂多县| 罗定市| 德昌县| 友谊县| 舒兰市| 楚雄市| 樟树市| 延吉市| 吉木萨尔县| 张家界市| 韶关市| 昌江| 云阳县| 合肥市| 万源市| 辰溪县| 贺兰县| 厦门市| 通海县| 鸡西市| 平湖市| 新竹市| 淮北市| 榆中县| 时尚| 五台县| 铜鼓县| 丹寨县|