找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Analysis at Large; Dedicated to the Lif Artur Avila,Michael Th. Rassias,Yakov Sinai Book 2022 The Editor(s) (if applicable) and The Author(

[復(fù)制鏈接]
樓主: Gratification
51#
發(fā)表于 2025-3-30 10:38:18 | 只看該作者
52#
發(fā)表于 2025-3-30 16:03:52 | 只看該作者
53#
發(fā)表于 2025-3-30 17:06:53 | 只看該作者
54#
發(fā)表于 2025-3-30 23:14:08 | 只看該作者
55#
發(fā)表于 2025-3-31 02:52:35 | 只看該作者
Polynomial Equations in Subgroups and Applications,evious results of P. Corvaja and U. Zannier (2013). We also obtain a conditional improvement of recent results of J. Bourgain, A. Gamburd, and P. Sarnak (2016) and S. V. Konyagin, S. V. Makarychev, I. E. Shparlinski, and I. V. Vyugin (2019) on the structure of solutions to the reduction of the Marko
56#
發(fā)表于 2025-3-31 07:38:01 | 只看該作者
Exponential Sums, Twisted Multiplicativity, and Moments,, and obtain evidence of un-correlation of exponential sums associated to different suitably unrelated and generic polynomials. The proofs combine analytic arguments with the algebraic interpretation of exponential sums and their monodromy groups.
57#
發(fā)表于 2025-3-31 10:53:02 | 只看該作者
Book 2022lows, logarithmic quantum dynamical bounds for arithmetically defined ergodic Schr?dinger operators, polynomial equations in subgroups, trace sets of restricted continued fraction semigroups, exponential sums, twisted multiplicativity and moments, the ternary Goldbach problem, as well as the multipl
58#
發(fā)表于 2025-3-31 15:59:57 | 只看該作者
operators, polynomial equations in subgroups, trace sets of restricted continued fraction semigroups, exponential sums, twisted multiplicativity and moments, the ternary Goldbach problem, as well as the multipl978-3-031-05333-7978-3-031-05331-3
59#
發(fā)表于 2025-3-31 18:38:58 | 只看該作者
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 10:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
香河县| 开平市| 丹江口市| 无棣县| 保康县| 竹北市| 若羌县| 嘉黎县| 商洛市| 拉萨市| 甘德县| 石嘴山市| 神木县| 延边| 镇沅| 西青区| 岳阳市| 鹿邑县| 临猗县| 宜兰市| 华容县| 肥西县| 乌审旗| 隆德县| 石狮市| 天门市| 牡丹江市| 镇赉县| 辽阳市| 武清区| 敖汉旗| 楚雄市| 南涧| 尚义县| 常宁市| 天镇县| 乌海市| 南汇区| 青川县| 成都市| 毕节市|