找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis as a Life; Dedicated to Heinric Sergei Rogosin,Ahmet Okay ?elebi Book 2019 Springer Nature Switzerland AG 2019 complex differentia

[復制鏈接]
樓主: 吞食
51#
發(fā)表于 2025-3-30 10:29:59 | 只看該作者
52#
發(fā)表于 2025-3-30 13:17:13 | 只看該作者
53#
發(fā)表于 2025-3-30 20:24:03 | 只看該作者
54#
發(fā)表于 2025-3-30 23:45:35 | 只看該作者
55#
發(fā)表于 2025-3-31 04:35:37 | 只看該作者
56#
發(fā)表于 2025-3-31 05:54:16 | 只看該作者
Time Dependent Solutions for the Biot Equations,que solution. More precisely, we consider the classical experimental method for measuring bone parameters, that is where a bone sample in a water bath and the bone sample interrogated with an ultrasound devise. This procedure leads to an inverse problem where the ultrasound signal is measured in var
57#
發(fā)表于 2025-3-31 10:54:00 | 只看該作者
Schwartz-Type Boundary Value Problems for Monogenic Functions in a Biharmonic Algebra,{.., ..} satisfying the conditions ., .. The algebra . is associated with the biharmonic equation, and considered problems have relations to the plane elasticity. We develop methods of its solving which are based on expressions of solutions by hypercomplex integrals analogous to the classic Schwartz
58#
發(fā)表于 2025-3-31 15:50:22 | 只看該作者
The String Equation for Some Rational Functions, bracket is applied to the conformal map itself together with its conformally reflected map the result is identically one. This is called the string equation, and it is closely connected to the governing equation, the Polubarinova-Galin equation, for the evolution of a Hele-Shaw blob of a viscous fl
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-12 02:14
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
左贡县| 永春县| 万山特区| 东丰县| 建昌县| 绩溪县| 龙泉市| 宁波市| 左云县| 枞阳县| 四平市| 岳阳市| 石阡县| 黑龙江省| 阿拉善右旗| 东阿县| 临西县| 商洛市| 新邵县| 山阴县| 郑州市| 张北县| 齐河县| 临洮县| 石台县| 瓮安县| 滦平县| 九台市| 福安市| 綦江县| 巧家县| 张家川| 五常市| 东乌珠穆沁旗| 清流县| 应城市| 措美县| 射洪县| 甘肃省| 香港 | 福清市|