找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis and Synthesis of Delta Operator Systems with Actuator Saturation; Hongjiu Yang,Yuanqing Xia,Qing Geng Book 2019 Springer Nature S

[復(fù)制鏈接]
樓主: 驅(qū)逐
21#
發(fā)表于 2025-3-25 06:31:50 | 只看該作者
22#
發(fā)表于 2025-3-25 08:32:30 | 只看該作者
23#
發(fā)表于 2025-3-25 13:06:42 | 只看該作者
Modelling Back-end Issues in Manufacturingximation of a maximal invariant ellipsoid has been discussed for discrete-time systems with bounded controls [199]. The DoA has been given for linear time-invariant systems subject to disturbances and state constraints [133]. Monotonicity of a maximal invariant ellipsoid has been analyzed for a linear system with actuator saturation [197].
24#
發(fā)表于 2025-3-25 19:20:40 | 只看該作者
https://doi.org/10.1007/978-1-4419-0359-4s, has been proposed in [.]. A probabilistic evaluation of energy absorption capability of transmission line surge arresters based on a Monte Carlo method has been presented in [.]. It is reasonable that delta operator is used to replace traditional shift operator for fast sampling in analysis of high-frequency systems.
25#
發(fā)表于 2025-3-25 20:10:46 | 只看該作者
26#
發(fā)表于 2025-3-26 03:52:07 | 只看該作者
Monotonicity and Parametric Riccati Equationximation of a maximal invariant ellipsoid has been discussed for discrete-time systems with bounded controls [199]. The DoA has been given for linear time-invariant systems subject to disturbances and state constraints [133]. Monotonicity of a maximal invariant ellipsoid has been analyzed for a linear system with actuator saturation [197].
27#
發(fā)表于 2025-3-26 06:28:05 | 只看該作者
28#
發(fā)表于 2025-3-26 10:24:34 | 只看該作者
29#
發(fā)表于 2025-3-26 16:40:01 | 只看該作者
30#
發(fā)表于 2025-3-26 18:52:22 | 只看該作者
2198-4182 . It also discusses the domain of attraction on different systems in delta domain, and investigates the applications in complicated systems using delta operator approaches.978-981-13-3660-7Series ISSN 2198-4182 Series E-ISSN 2198-4190
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 10:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宾川县| 虞城县| 山西省| 奇台县| 颍上县| 柳江县| 平阳县| 临澧县| 桐柏县| 哈尔滨市| 普陀区| 阳朔县| 隆尧县| 永仁县| 靖江市| 疏勒县| 襄樊市| 白河县| 南投县| 深圳市| 浪卡子县| 三门县| 方正县| 昆明市| 镇沅| 泉州市| 柏乡县| 南靖县| 宜城市| 五莲县| 洞口县| 盐山县| 灌云县| 奇台县| 肥城市| 锡林郭勒盟| 乐至县| 泾源县| 繁昌县| 保靖县| 桃江县|