找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis and Simulation of Chaotic Systems; Frank C. Hoppensteadt Textbook 19931st edition Springer Science+Business Media New York 1993 C

[復(fù)制鏈接]
樓主: irritants
21#
發(fā)表于 2025-3-25 06:59:31 | 只看該作者
22#
發(fā)表于 2025-3-25 07:48:27 | 只看該作者
Digital Video: An Introduction to MPEG-2Regular perturbation methods are based on Taylor’s formula and on implicit function theorems. However, there are many problems to which Taylor’s formula cannot be applied directly, in which case perturbation methods based on multiple time or space scales can often be used, sometimes even for chaotic systems.
23#
發(fā)表于 2025-3-25 15:00:43 | 只看該作者
24#
發(fā)表于 2025-3-25 17:29:14 | 只看該作者
25#
發(fā)表于 2025-3-25 21:44:48 | 只看該作者
26#
發(fā)表于 2025-3-26 03:52:08 | 只看該作者
27#
發(fā)表于 2025-3-26 04:37:53 | 只看該作者
Methods of AveragingRegular perturbation methods are based on Taylor’s formula and on implicit function theorems. However, there are many problems to which Taylor’s formula cannot be applied directly, in which case perturbation methods based on multiple time or space scales can often be used, sometimes even for chaotic systems.
28#
發(fā)表于 2025-3-26 09:50:39 | 只看該作者
29#
發(fā)表于 2025-3-26 14:56:48 | 只看該作者
Analysis and Simulation of Chaotic Systems978-1-4757-2275-8Series ISSN 0066-5452 Series E-ISSN 2196-968X
30#
發(fā)表于 2025-3-26 20:44:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 23:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临邑县| 连州市| 东海县| 潢川县| 启东市| 漳浦县| 依安县| 呼图壁县| 漠河县| 宿州市| 依安县| 丹棱县| 南京市| 西和县| 赤水市| 阜宁县| 泸水县| 湖南省| 盐城市| 贵州省| 卢湾区| 喜德县| 龙海市| 越西县| 扎囊县| 黑山县| 乃东县| 介休市| 仙游县| 齐河县| 丽江市| 昭苏县| 如东县| 仙居县| 华阴市| 长白| 东辽县| 新丰县| 拉萨市| 都匀市| 周至县|