找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis and Quantum Groups; Lars Tuset Textbook 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer

[復(fù)制鏈接]
樓主: Deleterious
21#
發(fā)表于 2025-3-25 05:24:41 | 只看該作者
22#
發(fā)表于 2025-3-25 08:32:13 | 只看該作者
23#
發(fā)表于 2025-3-25 14:24:48 | 只看該作者
Digital VLSI Design with VerilogThe classical notion of twisted actions of groups on algebras can be rephrased as so called cocycle coactions of locally compact quantum groups on von Neumann algebras generalizing both twisted actions and coactions.
24#
發(fā)表于 2025-3-25 18:27:02 | 只看該作者
Introduction,Quantum groups disclosed themselves to us as holders of .-matrices via quantum inverse scattering methods.
25#
發(fā)表于 2025-3-25 21:55:49 | 只看該作者
Banach Spaces,This chapter deals with what could be called geometric functional analysis. Results from plane geometry are generalized to infinite dimensional vector spaces, including function spaces, yielding powerful, general results with a wide range of applications from within optimization theory to physics.
26#
發(fā)表于 2025-3-26 02:29:59 | 只看該作者
Tensor Products,Tensor products is the study of multilinear maps by linear maps, meaning that the multilinear maps from a space factor uniquely through a linear map defined on another vector space called the tensor product of the vector spaces occurring as direct products in the domain of the multilinear maps.
27#
發(fā)表于 2025-3-26 06:43:47 | 只看該作者
Spectra and Type , Factors,In this section we study some useful invariants especially of type . von Neumann algebras bringing our classification program to a certain level of completion. From the outset these invariants are associated with dynamical systems.
28#
發(fā)表于 2025-3-26 08:52:56 | 只看該作者
Quantum Groups and Duality,The basic notion in this chapter and the second half of the book, is that of a locally compact quantum group
29#
發(fā)表于 2025-3-26 14:11:14 | 只看該作者
30#
發(fā)表于 2025-3-26 20:00:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 17:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
津市市| 延川县| 共和县| 石楼县| 墨玉县| 成武县| 新和县| 昂仁县| 泸水县| 台前县| 赣州市| 东兴市| 昌都县| 绩溪县| 松溪县| 西丰县| 柳河县| 平潭县| 永川市| 馆陶县| 砚山县| 宁河县| 庐江县| 上虞市| 九江县| 乐平市| 尼玛县| 边坝县| 通榆县| 闸北区| 洪江市| 若尔盖县| 成安县| 明星| 习水县| 抚顺市| 阿尔山市| 丹江口市| 内乡县| 杨浦区| 梁河县|