找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis and Optimization of Systems: State and Frequency Domain Approaches for Infinite-Dimensional; Proceedings of the 1 R. F. Curtain,A.

[復制鏈接]
樓主: 萌芽的心
11#
發(fā)表于 2025-3-23 12:20:23 | 只看該作者
https://doi.org/10.1007/978-3-319-70491-3In particular, using Nevanlinna-Pick interpolation we indicate how to solve the gain and phase margin problems for both lumped and distributed parameter systems. Moreover using skew Toeplitz theory, we will indicate the solution of the standard problem for a broad class of distributed parameter plants.
12#
發(fā)表于 2025-3-23 15:13:30 | 只看該作者
13#
發(fā)表于 2025-3-23 20:13:32 | 只看該作者
Digital Culture for Optimizationquations are obtained for the optimal estimate ( conditional expectation ) and covariance operator in both integral and differential forms. A separate section is devoted to the case of discrete observations. For instance, the filtering problem for the heat equation is investigated.
14#
發(fā)表于 2025-3-23 23:38:13 | 只看該作者
15#
發(fā)表于 2025-3-24 05:56:46 | 只看該作者
A state-space approach to ,,-control problems for infinite-dimensional systems, complete generalization of the finite-dimensional result: the problem is solvable if and only if two coupled Riccati equations have stabilizing solutions; all sub-optimal controllers can be parametrized in terms of these solutions.
16#
發(fā)表于 2025-3-24 06:52:14 | 只看該作者
Infinite dimensional system transfer functions,esoer, is studied in some detail. Moreover, one indicates the relationship between this algebra and semigroup Hilbert state space linear systems with finite rank bounded sensing and control. The theory is illustrated by several examples.
17#
發(fā)表于 2025-3-24 12:48:16 | 只看該作者
18#
發(fā)表于 2025-3-24 15:46:26 | 只看該作者
19#
發(fā)表于 2025-3-24 19:37:17 | 只看該作者
20#
發(fā)表于 2025-3-24 23:30:49 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 00:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
清苑县| 石景山区| 宾川县| 乐至县| 龙州县| 襄汾县| 赤水市| 庆安县| 吴川市| 上高县| 江源县| 平泉县| 祁阳县| 津南区| 衢州市| 丹江口市| 安化县| 辽中县| 贵州省| 临海市| 瓮安县| 安丘市| 杂多县| 塔河县| 长垣县| 乃东县| 建平县| 孝昌县| 屯留县| 长乐市| 吴川市| 贞丰县| 崇文区| 嘉鱼县| 宣威市| 托里县| 泽州县| 高邮市| 涟水县| 祥云县| 华蓥市|