找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis and Operator Theory; Dedicated in Memory Themistocles M. Rassias,Valentin A. Zagrebnov Book 2019 Springer Nature Switzerland AG 2

[復(fù)制鏈接]
樓主: exterminate
11#
發(fā)表于 2025-3-23 13:40:11 | 只看該作者
Thomas Schuster,Lukas Waidelich,Raphael Volz value problem involving the sum of a linear differential and an integral or loaded operator with nonlocal or integral boundary conditions, assuming that the exact solution for the differential operator with conventional boundary conditions is known. We apply this perturbation method to solve partia
12#
發(fā)表于 2025-3-23 15:05:41 | 只看該作者
Analysis and Operator Theory978-3-030-12661-2Series ISSN 1931-6828 Series E-ISSN 1931-6836
13#
發(fā)表于 2025-3-23 18:22:14 | 只看該作者
14#
發(fā)表于 2025-3-24 01:06:19 | 只看該作者
Abel Gómez,Christophe Joubert,Jordi Cabot. is an operator mean (in particular, the weighted geometric mean), which are considered as certain reciprocal Lie–Trotter formulas and also a generalization of Kato’s limit to the supremum . with respect to the spectral order.
15#
發(fā)表于 2025-3-24 03:31:47 | 只看該作者
16#
發(fā)表于 2025-3-24 06:46:55 | 只看該作者
Sophie Hippmann,Raoul Klingner,Miriam Leisnctional analytic methods for Schr?dinger operators and we show existence of the infinite volume limit of equilibrium states, and uniqueness of the regular KMS (Kubo–Martin–Schwinger) states in the frame of Resolvent CCR Algebra introduced by D. Buchholz and H. Grundling.
17#
發(fā)表于 2025-3-24 14:25:02 | 只看該作者
https://doi.org/10.1007/978-3-030-12661-2linear and non-linear analysis; operator theory; partial differential equations; functional analysis; no
18#
發(fā)表于 2025-3-24 18:51:08 | 只看該作者
978-3-030-12663-6Springer Nature Switzerland AG 2019
19#
發(fā)表于 2025-3-24 20:10:16 | 只看該作者
20#
發(fā)表于 2025-3-25 01:15:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-1 13:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
建阳市| 侯马市| 平阴县| 南投市| 衡东县| 广灵县| 额尔古纳市| 永丰县| 溆浦县| 英德市| 高州市| 昭觉县| 丽江市| 时尚| 峨山| 柯坪县| 万源市| 通山县| 承德市| 潼关县| 涡阳县| 区。| 达拉特旗| 合水县| 韶山市| 灵武市| 南召县| 安康市| 四平市| 禹州市| 壤塘县| 岳西县| 田林县| 罗甸县| 兰坪| 乐都县| 澜沧| 汉中市| 宾阳县| 东明县| 宜都市|