找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis and Numerics for Conservation Laws; Gerald Warnecke Book 2005 Springer-Verlag Berlin Heidelberg 2005 astrophysics.calculus.comput

[復(fù)制鏈接]
樓主: solidity
31#
發(fā)表于 2025-3-26 23:45:27 | 只看該作者
The Role of the Jacobian in the Adaptive Discontinuous Galerkin Method for the Compressible Euler E and adaptive mesh refinement. In particular, we show that the (stationary) compressible Euler equations can efficiently be solved by the Newton method. Full quadratic Newton convergence is achieved on higher order elements as well as on locally refined meshes.
32#
發(fā)表于 2025-3-27 01:26:01 | 只看該作者
Hyperbolic GLM Scheme for Elliptic Constraints in Computational Electromagnetics and MHD,icular constraints. The central idea of our divergence correction scheme is the implementation of the physically consistent counter terms to Maxwell and . equations, for the restoration of the charge conservation laws. The underlying idea has been verified by numerical experiments for Maxwell-Vlasov and shallow water . systems.
33#
發(fā)表于 2025-3-27 08:59:32 | 只看該作者
34#
發(fā)表于 2025-3-27 11:06:29 | 只看該作者
35#
發(fā)表于 2025-3-27 14:44:10 | 只看該作者
Teachers and Technology: Looking Forward,ntegrals of the kinetic phase density. (ii) Decomposition of the evolution into periods of free flight, which are interrupted by update times. (iii) At the update times the data are refreshed by the Maximum Entropy Principle.
36#
發(fā)表于 2025-3-27 21:41:55 | 只看該作者
37#
發(fā)表于 2025-3-28 00:34:13 | 只看該作者
38#
發(fā)表于 2025-3-28 05:47:36 | 只看該作者
Matthew R. Bennett,Marcin Budkaitation processes in water. Due to the highly dynamical, unsteady processes under consideration we use an adaptive FV scheme for the computations to resolve accurately all physically relevant effects. The results are validated by comparison with tube experiments.
39#
發(fā)表于 2025-3-28 09:15:52 | 只看該作者
40#
發(fā)表于 2025-3-28 13:24:26 | 只看該作者
Gerald WarneckeNew results in major area of partial differential equations
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 04:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平阴县| 万安县| 青州市| 治多县| 华安县| 诏安县| 黎城县| 巴中市| 屏山县| 安阳县| 安多县| 南阳市| 肥西县| 孟村| 英山县| 乳山市| 辽宁省| 达日县| 枝江市| 清水河县| 平山县| 新兴县| 泰来县| 河东区| 梁平县| 天台县| 溆浦县| 苏尼特右旗| 霍城县| 汤阴县| 合江县| 莎车县| 宜黄县| 得荣县| 泊头市| 通河县| 泰和县| 铜鼓县| 新邵县| 临桂县| 阳朔县|