找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis and Geometry on Complex Homogeneous Domains; Jacques Faraut,Soji Kaneyuki,Guy Roos Textbook 2000 Springer Science+Business Media

[復(fù)制鏈接]
樓主: Obsolescent
41#
發(fā)表于 2025-3-28 17:32:50 | 只看該作者
Bergman Kernel and Bergman MetricIn this chapter we consider general domains in ?.. The material discussed is easily available in the literature. Still we give here essentially complete proofs, since we can do it in very concisely and since the results will be used later in several instances.
42#
發(fā)表于 2025-3-28 19:05:28 | 只看該作者
Symmetric Domains and Symmetric SpacesA domain .is said to be a . if it is bounded and if for every . in . there exists an automorphism .such that .. is involutive ..... and . is an isolated fixed point of ...
43#
發(fā)表于 2025-3-29 00:53:49 | 只看該作者
Structure of Symmetric DomainsWe continue with the setup and notations of Chapter III. For each .we set.we also write .. when .= ... We also use the abbreviation.and, similarly, y., e., etc. We set
44#
發(fā)表于 2025-3-29 05:21:42 | 只看該作者
45#
發(fā)表于 2025-3-29 09:15:44 | 只看該作者
Pseudo-Hermitian Symmetric Spaceshe linear isotropy representation of . is irreducible (resp. reducible), then . is called . (resp. .). If . admits a G-invariant complex structure . and a G-invariant pseudo-Hermitian metric (with respect to ., then a . is called .. Simple symmetric spaces were classified infinitesimally by Berger [1].
46#
發(fā)表于 2025-3-29 12:59:08 | 只看該作者
47#
發(fā)表于 2025-3-29 15:45:53 | 只看該作者
48#
發(fā)表于 2025-3-29 21:54:24 | 只看該作者
49#
發(fā)表于 2025-3-30 00:30:13 | 只看該作者
Requirements on digital signature schemes,gular cone in g. Then .is a complex Olshanski semi-group. Let .. be an element in the center of g such that Ad(..) has eigenvalues i, 0, -i, and.be the corresponding eigenspace decomposition. We assume that .Let P.... be the analytic subgroups in .with Lie algebras p..p.. The subgroup .normalizes p.
50#
發(fā)表于 2025-3-30 04:02:09 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-30 21:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
慈利县| 肇庆市| 博湖县| 桃源县| 伊吾县| 黄陵县| 安化县| 阿城市| 镇赉县| 忻州市| 库尔勒市| 兴宁市| 枣阳市| 清水县| 渝北区| 大田县| 印江| 绥宁县| 交城县| 临沧市| 英山县| 兴和县| 华蓥市| 永安市| 榕江县| 游戏| 新化县| 全椒县| 勐海县| 通化县| 剑阁县| 健康| 东海县| 二手房| 镇康县| 北海市| 正宁县| 塔城市| 五台县| 辽宁省| 汉寿县|