找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis and Geometry on Complex Homogeneous Domains; Jacques Faraut,Soji Kaneyuki,Guy Roos Textbook 2000 Springer Science+Business Media

[復(fù)制鏈接]
樓主: Obsolescent
41#
發(fā)表于 2025-3-28 17:32:50 | 只看該作者
Bergman Kernel and Bergman MetricIn this chapter we consider general domains in ?.. The material discussed is easily available in the literature. Still we give here essentially complete proofs, since we can do it in very concisely and since the results will be used later in several instances.
42#
發(fā)表于 2025-3-28 19:05:28 | 只看該作者
Symmetric Domains and Symmetric SpacesA domain .is said to be a . if it is bounded and if for every . in . there exists an automorphism .such that .. is involutive ..... and . is an isolated fixed point of ...
43#
發(fā)表于 2025-3-29 00:53:49 | 只看該作者
Structure of Symmetric DomainsWe continue with the setup and notations of Chapter III. For each .we set.we also write .. when .= ... We also use the abbreviation.and, similarly, y., e., etc. We set
44#
發(fā)表于 2025-3-29 05:21:42 | 只看該作者
45#
發(fā)表于 2025-3-29 09:15:44 | 只看該作者
Pseudo-Hermitian Symmetric Spaceshe linear isotropy representation of . is irreducible (resp. reducible), then . is called . (resp. .). If . admits a G-invariant complex structure . and a G-invariant pseudo-Hermitian metric (with respect to ., then a . is called .. Simple symmetric spaces were classified infinitesimally by Berger [1].
46#
發(fā)表于 2025-3-29 12:59:08 | 只看該作者
47#
發(fā)表于 2025-3-29 15:45:53 | 只看該作者
48#
發(fā)表于 2025-3-29 21:54:24 | 只看該作者
49#
發(fā)表于 2025-3-30 00:30:13 | 只看該作者
Requirements on digital signature schemes,gular cone in g. Then .is a complex Olshanski semi-group. Let .. be an element in the center of g such that Ad(..) has eigenvalues i, 0, -i, and.be the corresponding eigenspace decomposition. We assume that .Let P.... be the analytic subgroups in .with Lie algebras p..p.. The subgroup .normalizes p.
50#
發(fā)表于 2025-3-30 04:02:09 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-30 21:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
孝昌县| 楚雄市| 仪征市| 肇源县| 临清市| 南溪县| 鄂伦春自治旗| 海安县| 大竹县| 忻城县| 丹寨县| 左贡县| 芦山县| 进贤县| 闽侯县| 阜南县| 嘉定区| 松阳县| 抚顺市| 台湾省| 买车| 布拖县| 汝州市| 衡水市| 巴塘县| 盱眙县| 井研县| 无锡市| 宜都市| 鄂伦春自治旗| 乳源| 义乌市| 三原县| 五华县| 会宁县| 安陆市| 高州市| 福泉市| 民勤县| 石嘴山市| 平山县|