找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis and Geometry on Complex Homogeneous Domains; Jacques Faraut,Soji Kaneyuki,Guy Roos Textbook 2000 Springer Science+Business Media

[復(fù)制鏈接]
樓主: Obsolescent
41#
發(fā)表于 2025-3-28 17:32:50 | 只看該作者
Bergman Kernel and Bergman MetricIn this chapter we consider general domains in ?.. The material discussed is easily available in the literature. Still we give here essentially complete proofs, since we can do it in very concisely and since the results will be used later in several instances.
42#
發(fā)表于 2025-3-28 19:05:28 | 只看該作者
Symmetric Domains and Symmetric SpacesA domain .is said to be a . if it is bounded and if for every . in . there exists an automorphism .such that .. is involutive ..... and . is an isolated fixed point of ...
43#
發(fā)表于 2025-3-29 00:53:49 | 只看該作者
Structure of Symmetric DomainsWe continue with the setup and notations of Chapter III. For each .we set.we also write .. when .= ... We also use the abbreviation.and, similarly, y., e., etc. We set
44#
發(fā)表于 2025-3-29 05:21:42 | 只看該作者
45#
發(fā)表于 2025-3-29 09:15:44 | 只看該作者
Pseudo-Hermitian Symmetric Spaceshe linear isotropy representation of . is irreducible (resp. reducible), then . is called . (resp. .). If . admits a G-invariant complex structure . and a G-invariant pseudo-Hermitian metric (with respect to ., then a . is called .. Simple symmetric spaces were classified infinitesimally by Berger [1].
46#
發(fā)表于 2025-3-29 12:59:08 | 只看該作者
47#
發(fā)表于 2025-3-29 15:45:53 | 只看該作者
48#
發(fā)表于 2025-3-29 21:54:24 | 只看該作者
49#
發(fā)表于 2025-3-30 00:30:13 | 只看該作者
Requirements on digital signature schemes,gular cone in g. Then .is a complex Olshanski semi-group. Let .. be an element in the center of g such that Ad(..) has eigenvalues i, 0, -i, and.be the corresponding eigenspace decomposition. We assume that .Let P.... be the analytic subgroups in .with Lie algebras p..p.. The subgroup .normalizes p.
50#
發(fā)表于 2025-3-30 04:02:09 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 00:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
商南县| 邹城市| 四川省| 师宗县| 闵行区| 蓝田县| 拉萨市| 三门峡市| 龙游县| 通山县| 休宁县| 巴东县| 平凉市| 丹巴县| 克东县| 甘肃省| 宜君县| 宜川县| 常熟市| 清镇市| 叙永县| 盘锦市| 金华市| 明光市| 沙雅县| 周至县| 洛浦县| 甘孜县| 务川| 茶陵县| 平邑县| 同仁县| 丁青县| 汨罗市| 泗洪县| 高要市| 怀仁县| 开远市| 社旗县| 五华县| 襄城县|