找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis and Design of Nonlinear Control Systems; Daizhan Cheng,Xiaoming Hu,Tielong Shen Book 2010 Springer-Verlag Berlin Heidelberg 2010

[復(fù)制鏈接]
樓主: Destruct
11#
發(fā)表于 2025-3-23 11:34:39 | 只看該作者
https://doi.org/10.1007/978-3-642-92097-4d in Section 14.2 and the design principle for linear systems is introduced. Section 14.3 focuses on the ..- gain synthesis problem for nonlinear systems. In Section 14.4, a constructive design approach is presented. Finally, some application examples are presented to illustrate the design techniques in Section 14.5.
12#
發(fā)表于 2025-3-23 16:29:43 | 只看該作者
13#
發(fā)表于 2025-3-23 18:58:40 | 只看該作者
Algebra, Lie Group and Lie Algebra,gebra are introduced briefly in section 4.2. As a tool, homotopy is investigated in section 4.3. Sections 4.4 and 4.5 contain some primary knowledge about algebraic topology, such as fundamental group, covering space etc. In sections 4.6 and 4.7, Lie group and its Lie algebra are discussed. Section 4.8 considers the structure of Lie algebra.
14#
發(fā)表于 2025-3-24 01:35:48 | 只看該作者
Controllability and Observability,related to their controllability [1, 3, 8]. The Kalman decomposition of nonlinear systems is investigated in section 5.3. This section is based on [2]. We refer to [6, 7] for decomposition of nonlinear control systems.
15#
發(fā)表于 2025-3-24 03:56:05 | 只看該作者
16#
發(fā)表于 2025-3-24 10:05:29 | 只看該作者
Dissipative Systems,Based on these conditions, the controller design problem is investigated in Section 13.3. Finally, two classes of main dissipative systems, mainly Lagrange systems and Hamiltonian systems are studied in Section 13.4 and Section 13.5 respectively.
17#
發(fā)表于 2025-3-24 14:43:08 | 只看該作者
,,-Gain Synthesis,d in Section 14.2 and the design principle for linear systems is introduced. Section 14.3 focuses on the ..- gain synthesis problem for nonlinear systems. In Section 14.4, a constructive design approach is presented. Finally, some application examples are presented to illustrate the design techniques in Section 14.5.
18#
發(fā)表于 2025-3-24 17:49:53 | 只看該作者
19#
發(fā)表于 2025-3-24 20:52:00 | 只看該作者
20#
發(fā)表于 2025-3-25 02:41:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-30 05:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平山县| 马公市| 根河市| 大竹县| 光山县| 乐陵市| 光泽县| 上栗县| 肥乡县| 凤山市| 灌南县| 荣昌县| 临西县| 鹤峰县| 宿迁市| 镇原县| 闵行区| 滕州市| 襄城县| 黄梅县| 合作市| 潜江市| 札达县| 清涧县| 陇西县| 米林县| 称多县| 察雅县| 固镇县| 工布江达县| 平陆县| 苍山县| 马边| 恩施市| 商南县| 贵定县| 犍为县| 象州县| 鄂州市| 商洛市| 逊克县|