找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

1234567
返回列表
打印 上一主題 下一主題

Titlebook: Analysis and Applications - ISAAC 2001; Heinrich G. W. Begehr,Robert P. Gilbert,Man Wah Wo Book 2003 Springer Science+Business Media Dordr

[復(fù)制鏈接]
樓主: Hazardous
61#
發(fā)表于 2025-4-1 02:25:55 | 只看該作者
62#
發(fā)表于 2025-4-1 07:00:20 | 只看該作者
Analytic Functions and Analytic Functionals on Some Balls in the Complex Euclidean Space,n [1], [2] and [3] for the Lie ball, the complex Euclidean ball and the dual Lie ball can be generalized for the ..-balls. In this note, following our paper [4], we consider analytic functions and analytic functionals on the ..-balls ., and characterize them by their growth behavior of their harmonic components in their double series expansion.
63#
發(fā)表于 2025-4-1 10:39:49 | 只看該作者
Carleman Estimates for a Plate Equation on a Riemann Manifold with Energy Level Terms,onal Riemann manifold (., .). The energy level for this problem is ..(Ω) × ..(Ω). The basic assumption made is the existence of a strictly convex function on Ω. Carleman estimates are also a critical springboard from which one may derive the . inequalities of continuous observability/uniform stabilization of interest in control theory of PDEs.
64#
發(fā)表于 2025-4-1 16:45:47 | 只看該作者
Hyperbolicity for Systems, for any lower order terms (strong hyperbolicity), or for which systems the Cauchy problem is .. well posed (hyperbolicity). We here present a survey of the subject, in particular focussing the interests on the necessary conditions for strong hyperbolicity or just hyperbolicity.
65#
發(fā)表于 2025-4-1 20:16:12 | 只看該作者
66#
發(fā)表于 2025-4-2 01:33:47 | 只看該作者
67#
發(fā)表于 2025-4-2 05:31:10 | 只看該作者
Nevanlinna Theory in Characteristic , and Applications,tic . ≥ 0 and characterise all solutions when it has constant coefficients: this generalizes previous results in characteristic zero but with a more general form involving polynomials with a zero derivative. Proofs are given in a preprint where applications to the .-problem are also obtained.
1234567
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 18:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
民丰县| 长沙县| 行唐县| 南陵县| 筠连县| 镇远县| 油尖旺区| 泽州县| 淮南市| 吉木乃县| 淳安县| 嵊泗县| 钟祥市| 盐边县| 沙坪坝区| 丁青县| 常州市| 綦江县| 宣武区| 镇巴县| 新源县| 洛川县| 含山县| 阳城县| 揭阳市| 丰台区| 全南县| 玛曲县| 肃南| 隆安县| 承德县| 霞浦县| 莫力| 南阳市| 呼图壁县| 久治县| 琼海市| 西乡县| 云安县| 青州市| 光山县|