找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis and Applications - ISAAC 2001; Heinrich G. W. Begehr,Robert P. Gilbert,Man Wah Wo Book 2003 Springer Science+Business Media Dordr

[復制鏈接]
樓主: Hazardous
21#
發(fā)表于 2025-3-25 06:55:17 | 只看該作者
Power Geometry as a New Calculus,gebraic, ordinary differential and partial differential, and also to systems of such equations. Power Geometry is an alternative to Algebraic Geometry, Group Analysis, Nonstandard Analysis, Microlocal Analysis etc.
22#
發(fā)表于 2025-3-25 07:29:23 | 只看該作者
,A Survey of ,—Spaces and ,,-Classes,st part of the survey, we discuss concrete examples where different kinds of .-Carleson measures (0 < . < 1) are important. In the last section, we discuss a more general theory which gives both new results and new proofs of several results from the first part.
23#
發(fā)表于 2025-3-25 13:12:04 | 只看該作者
A New Property of Meromorphic Functions and Its Applications,e main conclusions of classical value distribution theory describing these points only quantitatively. The newly obtained properties can be used to study meromorphic functions . whose .-points lie on finite non-parallel lines for . belonging to a given set.
24#
發(fā)表于 2025-3-25 18:12:49 | 只看該作者
https://doi.org/10.1007/978-3-031-38207-9ecessary and sufficient conditions for the validity of the Riemann Hypothesis. Applying these conditions to the Riemann .-function, some numerical results will highlight a quantitative version of the dictum that “the Riemann Hypothesis, if true, is only barely so”.
25#
發(fā)表于 2025-3-25 20:35:38 | 只看該作者
Complex Zero Decreasing Sequences and the Riemann Hypothesis II,ecessary and sufficient conditions for the validity of the Riemann Hypothesis. Applying these conditions to the Riemann .-function, some numerical results will highlight a quantitative version of the dictum that “the Riemann Hypothesis, if true, is only barely so”.
26#
發(fā)表于 2025-3-26 04:02:20 | 只看該作者
27#
發(fā)表于 2025-3-26 05:33:11 | 只看該作者
28#
發(fā)表于 2025-3-26 08:27:23 | 只看該作者
29#
發(fā)表于 2025-3-26 15:33:01 | 只看該作者
30#
發(fā)表于 2025-3-26 20:29:20 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 00:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
石首市| 泰州市| 石阡县| 睢宁县| 大理市| 沁源县| 成都市| 兴海县| 高陵县| 中西区| 韩城市| 郸城县| 揭西县| 扬中市| 客服| 广南县| 长乐市| 巴彦县| 澜沧| 永丰县| 桐梓县| 五指山市| 定陶县| 阜城县| 郓城县| 隆回县| 黄大仙区| 张家港市| 娄底市| 庆城县| 孝义市| 南汇区| 资兴市| 皋兰县| 河曲县| 松溪县| 余姚市| 手机| 方山县| 南投县| 渝中区|