找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis and Applications - ISAAC 2001; Heinrich G. W. Begehr,Robert P. Gilbert,Man Wah Wo Book 2003 Springer Science+Business Media Dordr

[復制鏈接]
樓主: Hazardous
21#
發(fā)表于 2025-3-25 06:55:17 | 只看該作者
Power Geometry as a New Calculus,gebraic, ordinary differential and partial differential, and also to systems of such equations. Power Geometry is an alternative to Algebraic Geometry, Group Analysis, Nonstandard Analysis, Microlocal Analysis etc.
22#
發(fā)表于 2025-3-25 07:29:23 | 只看該作者
,A Survey of ,—Spaces and ,,-Classes,st part of the survey, we discuss concrete examples where different kinds of .-Carleson measures (0 < . < 1) are important. In the last section, we discuss a more general theory which gives both new results and new proofs of several results from the first part.
23#
發(fā)表于 2025-3-25 13:12:04 | 只看該作者
A New Property of Meromorphic Functions and Its Applications,e main conclusions of classical value distribution theory describing these points only quantitatively. The newly obtained properties can be used to study meromorphic functions . whose .-points lie on finite non-parallel lines for . belonging to a given set.
24#
發(fā)表于 2025-3-25 18:12:49 | 只看該作者
https://doi.org/10.1007/978-3-031-38207-9ecessary and sufficient conditions for the validity of the Riemann Hypothesis. Applying these conditions to the Riemann .-function, some numerical results will highlight a quantitative version of the dictum that “the Riemann Hypothesis, if true, is only barely so”.
25#
發(fā)表于 2025-3-25 20:35:38 | 只看該作者
Complex Zero Decreasing Sequences and the Riemann Hypothesis II,ecessary and sufficient conditions for the validity of the Riemann Hypothesis. Applying these conditions to the Riemann .-function, some numerical results will highlight a quantitative version of the dictum that “the Riemann Hypothesis, if true, is only barely so”.
26#
發(fā)表于 2025-3-26 04:02:20 | 只看該作者
27#
發(fā)表于 2025-3-26 05:33:11 | 只看該作者
28#
發(fā)表于 2025-3-26 08:27:23 | 只看該作者
29#
發(fā)表于 2025-3-26 15:33:01 | 只看該作者
30#
發(fā)表于 2025-3-26 20:29:20 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 00:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
海门市| 达尔| 三亚市| 盐山县| 乌什县| 游戏| 江阴市| 潜江市| 固镇县| 宜兴市| 德令哈市| 汉川市| 桂林市| 彰化县| 鄂伦春自治旗| 衢州市| 平利县| 宁城县| 富宁县| 剑阁县| 确山县| 苍梧县| 古田县| 涿州市| 广平县| 平乡县| 中山市| 安西县| 闸北区| 油尖旺区| 上思县| 正阳县| 广河县| 伊春市| 万山特区| 石城县| 且末县| 公安县| 黄冈市| 封丘县| 丰原市|