找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis Meets Geometry; The Mikael Passare M Mats Andersson,Jan Boman,Ragnar Sigurdsson Book 2017 Springer International Publishing AG 201

[復(fù)制鏈接]
樓主: Halcyon
11#
發(fā)表于 2025-3-23 12:38:49 | 只看該作者
978-3-319-84909-6Springer International Publishing AG 2017
12#
發(fā)表于 2025-3-23 15:08:53 | 只看該作者
13#
發(fā)表于 2025-3-23 19:40:33 | 只看該作者
14#
發(fā)表于 2025-3-23 22:55:07 | 只看該作者
Manufacturing Innovation and Horizon 2020Noether say that such a representation is possible under certain conditions on the variety of the associated homogeneous ideal. We present some variants of these results, as well as generalizations to subvarieties of ?..
15#
發(fā)表于 2025-3-24 03:31:06 | 只看該作者
https://doi.org/10.1007/978-981-15-6763-6ly proved as a special case of the optimal version of the Ohsawa–Takegoshi extension theorem. We present here a purely one-dimensional approach that should be suited to readers not interested in several complex variables.
16#
發(fā)表于 2025-3-24 08:25:58 | 只看該作者
Peter Bühler,Patrick Schlaich,Dominik Sinnernected components of the coamoeba complement and critical points of the polynomial, an upper bound on the area of a planar coamoeba, and a recovered bound on the number of positive solutions of a fewnomial system.
17#
發(fā)表于 2025-3-24 14:33:35 | 只看該作者
Multimedia Applications: Protocol MOT,se, of a result by Nisse, Sottile and the author. We also give topological and partly algebraical characterizations of the amoeba and coamoeba in some special cases: . = . 1, . = 1 and, when . is even, . = ./2, in the last case with a certain emphasis on the example . = 4.
18#
發(fā)表于 2025-3-24 18:41:55 | 只看該作者
Mats Andersson,Jan Boman,Ragnar SigurdssonIntroduces the reader to the theory of functions of several complex variables.Explains geometric ideas.Presents papers on the border between analysis and geometry
19#
發(fā)表于 2025-3-24 20:17:31 | 只看該作者
20#
發(fā)表于 2025-3-25 00:11:44 | 只看該作者
Amoebas and Coamoebas of Linear Spacesnsion, and we show that if a .-dimensional very affine linear space in (?*). is generic, then the dimension of its (co)amoeba is equal to min{2., .}. Moreover, we prove that the volume of its coamoeba is equal to π.. In addition, if the space is generic and real, then the volume of its amoeba is equal to π./2..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-30 21:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南召县| 米林县| 涟水县| 天台县| 西安市| 尼木县| 新竹县| 凉山| 巴中市| 岗巴县| 吴旗县| 孝义市| 大邑县| 荔浦县| 武汉市| 蕉岭县| 遂宁市| 广宗县| 勐海县| 子洲县| 宣威市| 射阳县| 澳门| 广宁县| 鹤岗市| 临潭县| 新野县| 樟树市| 临沂市| 尖扎县| 荣成市| 澜沧| 彰化市| 汾阳市| 和龙市| 临湘市| 万源市| 扬州市| 丹棱县| 察哈| 彰化市|