找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis I; Third Edition Terence Tao Textbook 20161st edition The Editor(s) (if applicable) and The Author(s), under exclusive license to

[復(fù)制鏈接]
查看: 8067|回復(fù): 45
樓主
發(fā)表于 2025-3-21 18:31:51 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Analysis I
期刊簡稱Third Edition
影響因子2023Terence Tao
視頻videohttp://file.papertrans.cn/157/156113/156113.mp4
發(fā)行地址Discusses all major topics of analysis in a simple, lucid manner.Highlights the concrete setting of the real line and Euclidean spaces.Provides examples, and step-by-step instructions.Evolves from the
學(xué)科分類Texts and Readings in Mathematics
圖書封面Titlebook: Analysis I; Third Edition Terence Tao Textbook 20161st edition The Editor(s) (if applicable) and The Author(s), under exclusive license to
影響因子.This is part one of a two-volume book on real analysis and is intended for senior undergraduate students of mathematics who have already been exposed to calculus. The emphasis is on rigour and foundations of analysis. Beginning with the construction of the number systems and set theory, the book discusses the basics of analysis (limits, series, continuity, differentiation, Riemann integration), through to power series, several variable calculus and Fourier analysis, and then finally the Lebesgue integral. These are almost entirely set in the concrete setting of the real line and Euclidean spaces, although there is some material on abstract metric and topological spaces. The book also has appendices on mathematical logic and the decimal system. The entire text (omitting some less central topics) can be taught in two quarters of 25–30 lectures each. The course material is deeply intertwined with the exercises, as it is intended that the student actively learn the material (and practice thinking and writing rigorously) by proving several of the key results in the theory..
Pindex Textbook 20161st edition
The information of publication is updating

書目名稱Analysis I影響因子(影響力)




書目名稱Analysis I影響因子(影響力)學(xué)科排名




書目名稱Analysis I網(wǎng)絡(luò)公開度




書目名稱Analysis I網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Analysis I被引頻次




書目名稱Analysis I被引頻次學(xué)科排名




書目名稱Analysis I年度引用




書目名稱Analysis I年度引用學(xué)科排名




書目名稱Analysis I讀者反饋




書目名稱Analysis I讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:05:26 | 只看該作者
Conclusion and Recommendations for Actionversely, one can use one’s experience in analytic rigour to extend one’s geometric intuition to such abstract settings; as mentioned earlier, the two viewpoints complement rather than oppose each other.)
板凳
發(fā)表于 2025-3-22 01:20:18 | 只看該作者
Differentiation of functions,versely, one can use one’s experience in analytic rigour to extend one’s geometric intuition to such abstract settings; as mentioned earlier, the two viewpoints complement rather than oppose each other.)
地板
發(fā)表于 2025-3-22 06:29:27 | 只看該作者
5#
發(fā)表于 2025-3-22 12:32:08 | 只看該作者
Starting at the beginning: The natural numbers,ore fundamental issue, which is: . do the rules of algebra work at all? For instance, why is it true that .(.+.) is equal to . + . for any three numbers .? This is not an arbitrary choice of rule; it can be proven from more primitive, and more fundamental, properties of the number system.
6#
發(fā)表于 2025-3-22 16:08:16 | 只看該作者
7#
發(fā)表于 2025-3-22 18:09:28 | 只看該作者
8#
發(fā)表于 2025-3-22 23:48:47 | 只看該作者
https://doi.org/10.1007/978-94-011-5318-8als (where we eventually replaced formal quotients with actual quotients), we never really finished the job of constructing the real numbers, because we never got around to replacing formal limits LIM. .. with actual limits lim. ... In fact, we haven’t defined limits at all yet. This will now be rectified.
9#
發(fā)表于 2025-3-23 03:26:52 | 只看該作者
10#
發(fā)表于 2025-3-23 07:38:28 | 只看該作者
Limits of sequences,als (where we eventually replaced formal quotients with actual quotients), we never really finished the job of constructing the real numbers, because we never got around to replacing formal limits LIM. .. with actual limits lim. ... In fact, we haven’t defined limits at all yet. This will now be rectified.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 00:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
仙居县| 长春市| 彭水| 长乐市| 万山特区| 珠海市| 林周县| 德清县| 宜丰县| 永济市| 枝江市| 平舆县| 友谊县| 西贡区| 连州市| 泰顺县| 五台县| 白银市| 合阳县| 阳山县| 武清区| 永靖县| 阳山县| 金昌市| 浑源县| 瑞丽市| 库伦旗| 泊头市| 乐业县| 通河县| 武山县| 红桥区| 黑山县| 秭归县| 大余县| 县级市| 长宁县| 龙里县| 舞阳县| 东莞市| 固镇县|