找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis 3; Ma?- und Integratio Otto Forster Textbook 20127th edition Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden 2012 Fourier-I

[復(fù)制鏈接]
樓主: DEIFY
41#
發(fā)表于 2025-3-28 16:33:04 | 只看該作者
https://doi.org/10.1007/978-3-658-37545-4viele angenehme Eigenschaften, die innerhalb der kleineren Klasse der stetigen Funktionen nicht gelten. Z.B. ist jede Distribution beliebig oft differenzierbar; bei Distributionen ist Limesbildung und Differentiation immer vertauschbar. Die Distributionen spielen eine wichtige Rolle in der Theorie d
42#
發(fā)表于 2025-3-28 19:04:36 | 只看該作者
43#
發(fā)表于 2025-3-29 02:37:28 | 只看該作者
44#
發(fā)表于 2025-3-29 05:01:17 | 只看該作者
45#
發(fā)表于 2025-3-29 10:12:55 | 只看該作者
46#
發(fā)表于 2025-3-29 12:08:08 | 只看該作者
Rotationssymmetrische Funktionen,erlichen zurückführen kann. Obwohl dies nur ein Spezialfall eines allgemeineren Satzes ist, den wir in § 14 beweisen werden, behandeln wir diesen einfachen Fall schon jetzt. Er liefert uns Beispielmaterial für sp?tere Paragraphen und ist zugleich eine sch?ne Illustration der Integration nach einem Bildma?.
47#
發(fā)表于 2025-3-29 19:10:55 | 只看該作者
48#
發(fā)表于 2025-3-29 19:53:11 | 只看該作者
49#
發(fā)表于 2025-3-30 00:42:20 | 只看該作者
,Der Gau?sche Integralsatz, Vektorfeldes durch ein Oberfl?chenintegral zu ersetzen. Dies ist das .-dimensionale Analogon des Fundamentalsatzes der Integral- und Differentialrechnung für Funktionen einer Ver?nderlichen. Der Gau?sche Integralsatz hat viele Anwendungen in der mathematischen Physik, wovon wir einige in den folgenden Paragraphen kennenlernen werden.
50#
發(fā)表于 2025-3-30 06:20:09 | 只看該作者
Textbook 20127th edition IRn mit Anwendungen, insbesondere solche, die für die theoretische Physik relevant sind. Der Text wurde für die 7. Auflage weiter überarbeitet und es kamen einige neue Aufgaben und Abbildungen sowie ein Symbolverzeichnis hinzu.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 06:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
历史| 新沂市| 土默特左旗| 嵊泗县| 辽阳县| 三亚市| 蕲春县| 云林县| 琼海市| 灵台县| 甘孜| 门头沟区| 淳安县| 怀柔区| 南郑县| 长治县| 洛浦县| 张掖市| 隆林| 香格里拉县| 东乡县| 集安市| 仁怀市| 弋阳县| 陵川县| 广东省| 苏尼特左旗| 平泉县| 郸城县| 运城市| 三门县| 梧州市| 海安县| 会泽县| 文水县| 丰台区| 吉林市| 西丰县| 客服| 新河县| 南宫市|