找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis 1; Konrad K?nigsberger Textbook 20015th edition Springer-Verlag Berlin Heidelberg 2001 Analysis.Differential- und Integralrechnun

[復制鏈接]
樓主: 與生
41#
發(fā)表于 2025-3-28 15:54:27 | 只看該作者
42#
發(fā)表于 2025-3-28 21:56:48 | 只看該作者
Lineare Differentialgleichungen,Zahlreiche Vorg?nge in Natur und Technik werden durch Differentialgleichungen beschrieben; radioaktiver Zerfall zum Beispiel durch ., einfache Schwingungen durch . + . + . = .(.). Vorg?nge, in denen ein Superpositionsprinzip gilt, führen auf lineare Differentialgleichungen.
43#
發(fā)表于 2025-3-29 01:02:13 | 只看該作者
Integralrechnung,Historisch liegen die Wurzeln der Integralrechnung in der Ermittlung von Fl?cheninhalten. Methodische Ans?tze finden sich zwar bereits bei Archimedes, Cavalieri und Barrow, dem Lehrer Newtons; die systematische Entwicklung aber beginnt erst mit der Entdeckung des Zusammenhangs von Differentiation und Integration durch Leibniz und Newton um 1670.
44#
發(fā)表于 2025-3-29 03:52:39 | 只看該作者
Geometrie differenzierbarer Kurven,Gem?? den beiden Wurzeln der Differential- und Integralrechnung, der Geometrie und der Physik, bringen wir in diesem und im n?chsten Kapitel erste Anwendungen der bisher entwickelten Analysis.
45#
發(fā)表于 2025-3-29 09:52:37 | 只看該作者
46#
發(fā)表于 2025-3-29 12:38:23 | 只看該作者
Komplexe Zahlen,exen Zahlen abgeschlossen. Dadurch wird insbesondere die L?sbarkeit der Gleichung . = -1 erreicht. Bereits 1545 rechnete Cardano (1501–1576) bei Gleichungen 3. Grades ?unter überwindung geistiger Qualen“ mit Quadratwurzeln aus negativen Zahlen. Unbedenklicher und mit gro?em Gewinn benützte Euler (1707–1783) komplexe Zahlen in der Analysis.
47#
發(fā)表于 2025-3-29 18:43:36 | 只看該作者
Elementar integrierbare Differentialgleichungen,auf die Berechnung der Nullstellen eines Polynoms zurückgeführt. In diesem Kapitel behandeln wir einige Differentialgleichungen, deren L?sungen im wesentlichen durch Integration ermittelt werden k?nnen. Für Elemente einer allgemeinen Theorie verweisen wir auf Band 2 sowie die im Literaturverzeichnis genannten Lehrbücher.
48#
發(fā)表于 2025-3-29 23:20:50 | 只看該作者
49#
發(fā)表于 2025-3-30 01:31:57 | 只看該作者
Die Gammafunktion,ung s! = s·(s-1)!. Infolge eines unglücklichen historischen Umstandes bezeichnet man nicht s!, sondern (s-1)! mit Γ(s); entsprechend lautet die Funktionalgleichung der gesuchten Funktion Γ(s+1) = s · Γ(s).
50#
發(fā)表于 2025-3-30 05:12:27 | 只看該作者
Konrad K?nigsbergerErfolgreiche Einführung in Analysis.Kurz und pr?gnant geschrieben.Mit L?sungshinweisen zu rund 250 übungsaufgaben.Includes supplementary material:
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 22:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
苗栗县| 平和县| 靖江市| 大田县| 襄垣县| 酒泉市| 会昌县| 缙云县| 伊宁县| 图们市| 哈尔滨市| 舞阳县| 繁峙县| 枣强县| 福鼎市| 垣曲县| 仪陇县| 常德市| 石林| 林芝县| 丰城市| 科技| 鹤峰县| 禄丰县| 湖南省| 金塔县| 阳泉市| 铜梁县| 揭阳市| 承德市| 云安县| 米脂县| 秦皇岛市| 北票市| 怀集县| 河南省| 聂拉木县| 彭山县| 剑河县| 青龙| 玛多县|