找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis 1; Konrad K?nigsberger Textbook 19953rd edition Springer-Verlag Berlin Heidelberg 1995 Analysis.Differential- und Integralrechnun

[復(fù)制鏈接]
樓主: 獨(dú)裁者
11#
發(fā)表于 2025-3-23 13:08:32 | 只看該作者
12#
發(fā)表于 2025-3-23 17:24:16 | 只看該作者
13#
發(fā)表于 2025-3-23 20:21:15 | 只看該作者
https://doi.org/10.1007/978-3-031-25115-3Die wichtigste Funktion der Mathematik ist die Exponentialfunktion. Wir führen sie ein als L?sung der Funktionalgleichung des natürlichen Wachstums mit Wachstumsgeschwindigkeit 1 zum Zeitpunkt 0. Ferner leiten wir aus der in ganz ? erkl?rten Exponentialfunktion die trigonometrischen Funktionen her.
14#
發(fā)表于 2025-3-23 23:15:33 | 只看該作者
15#
發(fā)表于 2025-3-24 04:56:01 | 只看該作者
Lecture Notes in Computer ScienceViele Vorg?nge in Natur und Technik werden durch Differentialgleichungen beschrieben; radioaktiver Zerfall zum Beispiel durch . = ? ., einfache Schwingungen durch . + . + .(.). Wie bei der schon im vorigen Kapitel behandelten speziellen Gleichung . + . = 0 spielt auch in allgemeineren F?llen die Exponentialfunktion eine fundamentale Rolle.
16#
發(fā)表于 2025-3-24 07:16:37 | 只看該作者
17#
發(fā)表于 2025-3-24 14:01:47 | 只看該作者
18#
發(fā)表于 2025-3-24 17:22:04 | 只看該作者
Yue Li,Lydia Abady,Hongxia Wang,Mauro BarniDas der Differentialrechnung zugrunde liegende Konzept der lokalen Approximation einer Funktion durch eine lineare Funktion wird jetzt erweitert zur Approximation durch Polynome. Ein Beispiel für die Verwendung approximierender Polynome bot bereits die Untersuchung von cos und sin in 8.7; ein weiteres bringt das Newton-Verfahren in 14.4.
19#
發(fā)表于 2025-3-24 20:17:34 | 只看該作者
,Natürliche Zahlen und vollst?ndige Induktion,Wir setzen das System . der natürlichen Zahlen 1,2,3,... als bekannt voraus. Zu seinen Strukturmerkmalen geh?rt das Prinzip der vollst?ndigen Induktion. Im Kern besagt dieses, da? man die Folge aller natürlichen Zahlen ohne Wiederkehr durchl?uft, wenn man beginnend bei 1 stets von einer natürlichen Zahl zur n?chsten weiterschreitet.
20#
發(fā)表于 2025-3-25 01:50:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 19:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丁青县| 临猗县| 南木林县| 弋阳县| 霍山县| 叙永县| 驻马店市| 毕节市| 莲花县| 西华县| 长泰县| 舟山市| 金昌市| 高安市| 曲松县| 福海县| 汕头市| 遵化市| 乐昌市| 平南县| 迁安市| 望都县| 永定县| 兴仁县| 秦安县| 维西| 浦城县| 建宁县| 屏南县| 宣城市| 秦皇岛市| 抚州市| 长丰县| 扎兰屯市| 韶山市| 富民县| 茂名市| 政和县| 平定县| 图木舒克市| 正镶白旗|