找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Undergraduate Primer in Algebraic Geometry; Ciro Ciliberto Textbook 2021 The Editor(s) (if applicable) and The Author(s), under exclusi

[復(fù)制鏈接]
樓主: 有作用
31#
發(fā)表于 2025-3-26 22:07:30 | 只看該作者
Smooth and Singular Points,Let . be an affine variety, with . and let . be a point of .. Let . be a line passing through ., so that . has parametric equations of the form .The polynomial system in .has the solution .. If the polynomials . are all identically 0, this means that . is contained in ..
32#
發(fā)表于 2025-3-27 02:58:33 | 只看該作者
33#
發(fā)表于 2025-3-27 07:04:30 | 只看該作者
34#
發(fā)表于 2025-3-27 11:16:01 | 只看該作者
35#
發(fā)表于 2025-3-27 14:34:36 | 只看該作者
Divisors, Linear Equivalence, Linear Series,In this chapter . will be an irreducible projective plane curve and we will denote by . its smooth birational model. A point . of . will be sometimes called a .?of . . at the point ..
36#
發(fā)表于 2025-3-27 20:57:47 | 只看該作者
Morphisms,ery regular function ., the function . is regular on .. We will denote by .(.,?.) the set of all morphisms from . to .. It is clear that the identity is a morphism and the composition of two morphisms is a morphism.
37#
發(fā)表于 2025-3-27 22:30:20 | 只看該作者
Product of Varieties,t of projective spaces is not a projective space. In this chapter we will give a structure of a projective variety on the product of projective spaces, which will make it possible to define the general concept of product of quasi–projective varieties.
38#
發(fā)表于 2025-3-28 02:21:32 | 只看該作者
The Cayley Form,two projections . and .. Consider the subset . of . defined in the following way .. . is a closed subset of .. . is a closed subset of ., so it suffices to show that there is a closed subset . of . such that ..
39#
發(fā)表于 2025-3-28 06:30:48 | 只看該作者
Ciro CilibertoProvides a self contained introduction to Algebraic Geometry for undergraduate students.Contains many exercises, some of them with solution.Useful for non-experts who want to learn the basics of Algeb
40#
發(fā)表于 2025-3-28 10:46:57 | 只看該作者
UNITEXThttp://image.papertrans.cn/a/image/155704.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 06:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
唐山市| 革吉县| 新巴尔虎右旗| 比如县| 酒泉市| 尤溪县| 洪湖市| 工布江达县| 兰西县| 景宁| 香格里拉县| 中西区| 泽普县| 庄浪县| 铅山县| 鹤岗市| 云龙县| 长泰县| 苗栗市| 鄢陵县| 西乌珠穆沁旗| 乌拉特中旗| 漾濞| 富民县| 西青区| 博爱县| 布尔津县| 三亚市| 徐闻县| 应用必备| 长宁县| 贡觉县| 阿瓦提县| 济源市| 蒙自县| 三江| 阿拉善右旗| 曲松县| 府谷县| 罗甸县| 越西县|