找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: An Isogeometric Approach to Beam Structures; Bridging the Classic Buntara S. Gan Book 2018 Springer International Publishing AG 2018 Beam e

[復(fù)制鏈接]
樓主: 女性
31#
發(fā)表于 2025-3-27 00:33:09 | 只看該作者
32#
發(fā)表于 2025-3-27 01:48:34 | 只看該作者
Condensation Method,om common beam element could ease practitioners to adopt. This new condensation method is discussed in detail and provided by MATLAB function list. The condensation method is applied to the same examples of the beam by using NURBS Chap. . to show its effectiveness.
33#
發(fā)表于 2025-3-27 06:31:37 | 只看該作者
Book 2018geometrical data into the conventional FE beam element codes. The book proposes a new reduction method where the beam element can be treated as under the conventional beam element theory that has only two nodes at both ends..
34#
發(fā)表于 2025-3-27 12:25:55 | 只看該作者
which the beam element can be treated as a conventional beam.This book proposes a novel, original condensation method to beam formulation based on the isogeometric approach to reducing the degrees of freedom to conventional two-node beam elements. In this volume, the author defines the Buntara Conde
35#
發(fā)表于 2025-3-27 16:40:33 | 只看該作者
https://doi.org/10.1007/978-3-642-51407-4neral curved beam element where the integration must be done numerically. To stick with the most basic concepts of beam element formulation using numerical integration, we will focus our description on a one-dimensional integration using the Gauss-Legendre quadrature method.
36#
發(fā)表于 2025-3-27 17:53:40 | 只看該作者
https://doi.org/10.1007/978-3-642-51407-4using shape functions, are described in detail. In constructing the beam element formulations, the shape functions which are derived from the homogeneous governing equations lead to high-accuracy beam analyses. The theories discussed and derived herewith will be used in the subsequent chapters when we deal with the Isogeometric approach to beams.
37#
發(fā)表于 2025-3-27 23:37:38 | 只看該作者
38#
發(fā)表于 2025-3-28 04:39:15 | 只看該作者
39#
發(fā)表于 2025-3-28 06:49:21 | 只看該作者
10樓
40#
發(fā)表于 2025-3-28 12:00:43 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 08:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安丘市| 济宁市| 东港市| 洛扎县| 泸溪县| 东莞市| 桦甸市| 长宁县| 莫力| 永康市| 松滋市| 临澧县| 潼南县| 东兴市| 江津市| 安吉县| 张家川| 奎屯市| 白玉县| 鹤岗市| 保定市| 民丰县| 濮阳市| 阿城市| 宝兴县| 汤阴县| 丽水市| 彝良县| 泗阳县| 正安县| 综艺| 墨竹工卡县| 西乌珠穆沁旗| 绥棱县| 临颍县| 湘潭市| 广安市| 百色市| 丰城市| 南城县| 清河县|