找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Isogeometric Approach to Beam Structures; Bridging the Classic Buntara S. Gan Book 2018 Springer International Publishing AG 2018 Beam e

[復(fù)制鏈接]
樓主: 女性
31#
發(fā)表于 2025-3-27 00:33:09 | 只看該作者
32#
發(fā)表于 2025-3-27 01:48:34 | 只看該作者
Condensation Method,om common beam element could ease practitioners to adopt. This new condensation method is discussed in detail and provided by MATLAB function list. The condensation method is applied to the same examples of the beam by using NURBS Chap. . to show its effectiveness.
33#
發(fā)表于 2025-3-27 06:31:37 | 只看該作者
Book 2018geometrical data into the conventional FE beam element codes. The book proposes a new reduction method where the beam element can be treated as under the conventional beam element theory that has only two nodes at both ends..
34#
發(fā)表于 2025-3-27 12:25:55 | 只看該作者
which the beam element can be treated as a conventional beam.This book proposes a novel, original condensation method to beam formulation based on the isogeometric approach to reducing the degrees of freedom to conventional two-node beam elements. In this volume, the author defines the Buntara Conde
35#
發(fā)表于 2025-3-27 16:40:33 | 只看該作者
https://doi.org/10.1007/978-3-642-51407-4neral curved beam element where the integration must be done numerically. To stick with the most basic concepts of beam element formulation using numerical integration, we will focus our description on a one-dimensional integration using the Gauss-Legendre quadrature method.
36#
發(fā)表于 2025-3-27 17:53:40 | 只看該作者
https://doi.org/10.1007/978-3-642-51407-4using shape functions, are described in detail. In constructing the beam element formulations, the shape functions which are derived from the homogeneous governing equations lead to high-accuracy beam analyses. The theories discussed and derived herewith will be used in the subsequent chapters when we deal with the Isogeometric approach to beams.
37#
發(fā)表于 2025-3-27 23:37:38 | 只看該作者
38#
發(fā)表于 2025-3-28 04:39:15 | 只看該作者
39#
發(fā)表于 2025-3-28 06:49:21 | 只看該作者
10樓
40#
發(fā)表于 2025-3-28 12:00:43 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 12:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和田市| 绥化市| 将乐县| 吉木萨尔县| 德州市| 远安县| 邵东县| 绥化市| 漳平市| 灵寿县| 新龙县| 改则县| 塘沽区| 乐安县| 安西县| 分宜县| 武功县| 华安县| 望谟县| 宁津县| 麟游县| 库伦旗| 井冈山市| 清镇市| 若羌县| 怀仁县| 嘉兴市| 十堰市| 牟定县| 图木舒克市| 桦南县| 诸城市| 滨州市| 潞西市| 昂仁县| 平塘县| 雅安市| 瑞丽市| 皋兰县| 太湖县| 故城县|