找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Invitation to Unbounded Representations of ?-Algebras on Hilbert Space; Konrad Schmüdgen Textbook 2020 The Editor(s) (if applicable) an

[復(fù)制鏈接]
樓主: rupture
11#
發(fā)表于 2025-3-23 09:43:29 | 只看該作者
https://doi.org/10.1007/978-3-642-94331-7-seminorm. If this .-algebra of bounded elements coincides with ., then . is called Archimedean. In this case each .-positive .- representation of . acts by bounded operators and the corresponding .-seminorm can be characterized in terms of the .-positive representations. Two abstract Stellens?tze f
12#
發(fā)表于 2025-3-23 17:47:06 | 只看該作者
https://doi.org/10.1007/978-3-642-94331-7e representation theory of this relation is closely linked to properties of the dynamical system defined by the function F. It is shown that finite-dimensional irreducible representations correspond to cycles of the dynamical system. Infinite-dimensional irreducible representations are classified in
13#
發(fā)表于 2025-3-23 20:57:08 | 只看該作者
https://doi.org/10.1007/978-3-642-48579-4onal expectation which allows one to define induced representations. We develop this theory in detail for representations that are induced from hermitian characters of commutative .-subalgebras. The Bargmann–Fock representation of the Weyl algebra is obtained in this manner.
14#
發(fā)表于 2025-3-24 00:56:12 | 只看該作者
15#
發(fā)表于 2025-3-24 04:52:14 | 只看該作者
16#
發(fā)表于 2025-3-24 06:51:18 | 只看該作者
17#
發(fā)表于 2025-3-24 10:43:46 | 只看該作者
18#
發(fā)表于 2025-3-24 15:53:20 | 只看該作者
19#
發(fā)表于 2025-3-24 22:15:41 | 只看該作者
Induced ,-Representations,onal expectation which allows one to define induced representations. We develop this theory in detail for representations that are induced from hermitian characters of commutative .-subalgebras. The Bargmann–Fock representation of the Weyl algebra is obtained in this manner.
20#
發(fā)表于 2025-3-25 02:54:32 | 只看該作者
Well-Behaved Representations, this chapter we develop three general methods (group graded .-algebras, fraction algebras, compatible pairs) and apply them to the representations of the Weyl algebra and enveloping algebras of finite-dimensional Lie algebras.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 04:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
石家庄市| 佛教| 图片| 永修县| 潞城市| 酒泉市| 墨脱县| 宁海县| 蒙山县| 青铜峡市| 阿克陶县| 满城县| 固阳县| 上杭县| 荣成市| 乳山市| 营口市| 大港区| 志丹县| 平远县| 衡阳市| 普陀区| 仁布县| 仲巴县| 克东县| 马边| 鄢陵县| 玉田县| 自贡市| 东明县| 阿荣旗| 凯里市| 古交市| 隆回县| 谢通门县| 天台县| 始兴县| 台前县| 广东省| 东莞市| 台山市|