找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Invitation to Modern Enumerative Geometry; Andrea T. Ricolfi Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive

[復(fù)制鏈接]
樓主: ergonomics
41#
發(fā)表于 2025-3-28 18:28:20 | 只看該作者
42#
發(fā)表于 2025-3-28 19:15:08 | 只看該作者
Background Material,o sketch the algebraic definition of Chern classes, and conclude the chapter with a brief overview on representable functors, that will be needed to define fine moduli spaces and universal families. By . we will always mean an algebraically closed field. Most of the time in later chapters, we will s
43#
發(fā)表于 2025-3-29 00:10:13 | 只看該作者
44#
發(fā)表于 2025-3-29 06:50:23 | 只看該作者
,The Atiyah–Bott Localisation Formula, Vainsencher (Mat Contemp 20:1–70, 2001) and Anderson (Introduction to equivariant cohomology in algebraic geometry. Contributions to algebraic geometry, European Mathematical Society, Zürich, EMS Series of Congress Reports, 2012). 16th School of Algebra, Part I (Brasília, 2000). We note that the re
45#
發(fā)表于 2025-3-29 07:32:51 | 只看該作者
Applications of the Localisation Formula, Contemp 20:1–70, 2001) was of great inspiration for the first three sections in this chapter, and we take the opportunity to refer the reader to loc. cit. for more examples of application of the localisation formula (upgraded to equivariant Chow theory) in enumerative geometry.
46#
發(fā)表于 2025-3-29 11:34:48 | 只看該作者
The Toy Model for the Virtual Class and Its Localisation,from (see Remark 10.1.15). This construction has historically two approaches: that of Li–Tian (J Am Math Soc 11(1):119–174, 1998) and that of Behrend–Fantechi (Invent Math 128(1):45–88, 1997). In this chapter we shall explicitly construct the perfect obstruction theory on a scheme of the form .?=?.(
47#
發(fā)表于 2025-3-29 16:09:23 | 只看該作者
,DT/PT Correspondence and a Glimpse of Gromov–Witten Theory, and Pandharipande–Thomas invariants. This relation (Theorem 12.1.1) was proved by Bridgeland (J Am Math Soc 24(4):969–998, 2011) and Toda (J Am Math Soc 23(4):1119–1157, 2010). The classical setup, summarised in the next section, involves a . Calabi–Yau 3-fold. In Sect. 12.2 we will exploit virtual
48#
發(fā)表于 2025-3-29 21:59:43 | 只看該作者
49#
發(fā)表于 2025-3-30 01:53:42 | 只看該作者
50#
發(fā)表于 2025-3-30 04:57:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 00:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新竹县| 东平县| 龙州县| 凭祥市| 邵阳县| 和田市| 嘉义市| 萝北县| 颍上县| 鹰潭市| 克什克腾旗| 梁河县| 芜湖县| 长汀县| 桐庐县| 江永县| 平远县| 绥滨县| 堆龙德庆县| 建水县| 彝良县| 内黄县| 司法| 石泉县| 潼南县| 三江| 大石桥市| 增城市| 乌兰县| 姚安县| 铅山县| 鹤峰县| 安远县| 福建省| 西昌市| 永丰县| 峨眉山市| 塔河县| 五河县| 留坝县| 丰城市|