找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Invitation to Coarse Groups; Arielle Leitner,Federico Vigolo Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusive

[復(fù)制鏈接]
查看: 38081|回復(fù): 50
樓主
發(fā)表于 2025-3-21 19:31:21 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱An Invitation to Coarse Groups
影響因子2023Arielle Leitner,Federico Vigolo
視頻videohttp://file.papertrans.cn/156/155634/155634.mp4
發(fā)行地址Develops the subject from first principles.Presents new research directions, with open problems.Will become a standard reference on coarse groups
學(xué)科分類Lecture Notes in Mathematics
圖書封面Titlebook: An Invitation to Coarse Groups;  Arielle Leitner,Federico Vigolo Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusive
影響因子This book lays the foundation for a theory of coarse groups: namely, sets with operations that satisfy the group axioms “up to uniformly bounded error”. These structures are the group objects in the category of coarse spaces, and arise naturally as approximate subgroups, or as coarse kernels..The first aim is to provide a standard entry-level introduction to coarse groups. Extra care has been taken to give a detailed, self-contained and accessible account of the theory. The second aim is to quickly bring the reader to the forefront of research. This is easily accomplished, as the subject is still young, and even basic questions remain unanswered...Reflecting its dual purpose, the book is divided into two parts. The first part covers the fundamentals of coarse groups and their actions. Here the theory of coarse homomorphisms, quotients and subgroups is developed, with proofs of coarse versions of the isomorphism theorems, and it is shown how coarse actions are related to fundamental aspects of geometric group theory. The second part, which is less self-contained, is an invitation to further research, where each thread leads to open questions of varying depth and difficulty. Among ot
Pindex Book 2023
The information of publication is updating

書目名稱An Invitation to Coarse Groups影響因子(影響力)




書目名稱An Invitation to Coarse Groups影響因子(影響力)學(xué)科排名




書目名稱An Invitation to Coarse Groups網(wǎng)絡(luò)公開度




書目名稱An Invitation to Coarse Groups網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱An Invitation to Coarse Groups被引頻次




書目名稱An Invitation to Coarse Groups被引頻次學(xué)科排名




書目名稱An Invitation to Coarse Groups年度引用




書目名稱An Invitation to Coarse Groups年度引用學(xué)科排名




書目名稱An Invitation to Coarse Groups讀者反饋




書目名稱An Invitation to Coarse Groups讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:55:03 | 只看該作者
0075-8434 rt, which is less self-contained, is an invitation to further research, where each thread leads to open questions of varying depth and difficulty. Among ot978-3-031-42759-6978-3-031-42760-2Series ISSN 0075-8434 Series E-ISSN 1617-9692
板凳
發(fā)表于 2025-3-22 03:41:33 | 只看該作者
An Invitation to Coarse Groups978-3-031-42760-2Series ISSN 0075-8434 Series E-ISSN 1617-9692
地板
發(fā)表于 2025-3-22 05:01:43 | 只看該作者
5#
發(fā)表于 2025-3-22 11:52:45 | 只看該作者
6#
發(fā)表于 2025-3-22 13:39:34 | 只看該作者
7#
發(fā)表于 2025-3-22 17:12:41 | 只看該作者
8#
發(fā)表于 2025-3-23 01:09:01 | 只看該作者
9#
發(fā)表于 2025-3-23 01:39:11 | 只看該作者
Erstbeschreibung der iliakalen Endofibrose,Having finished the relevant preliminaries on the category of coarse spaces, we are finally ready to introduce the main object of study of this book: coarse groups.
10#
發(fā)表于 2025-3-23 09:24:50 | 只看該作者
Erstbeschreibung der iliakalen Endofibrose,Let . and . be coarse groups with coarse multiplication . and . respectively.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-2 08:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
清镇市| 德格县| 卓尼县| 临澧县| 宣武区| 峨边| 金沙县| 明水县| 乌兰察布市| 灵璧县| 富阳市| 赤水市| 新疆| 夏邑县| 扎赉特旗| 梁平县| 安徽省| 达州市| 东丰县| 大渡口区| 石景山区| 合川市| 乐山市| 阿拉尔市| 卢氏县| 富民县| 巩留县| 五河县| 诸暨市| 高青县| 红安县| 贵州省| 通海县| 祁东县| 神农架林区| 新绛县| 通化市| 崇礼县| 廊坊市| 濉溪县| 尼勒克县|