找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Invitation to C*-Algebras; William Arveson Textbook 1976 Springer-Verlag New York, Inc. 1976 Darstellung (Math.).algebra.function.mathe

[復(fù)制鏈接]
查看: 31745|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:43:06 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱An Invitation to C*-Algebras
影響因子2023William Arveson
視頻videohttp://file.papertrans.cn/156/155633/155633.mp4
學(xué)科分類Graduate Texts in Mathematics
圖書封面Titlebook: An Invitation to C*-Algebras;  William Arveson Textbook 1976 Springer-Verlag New York, Inc. 1976 Darstellung (Math.).algebra.function.mathe
影響因子This book gives an introduction to C*-algebras and their representations on Hilbert spaces. We have tried to present only what we believe are the most basic ideas, as simply and concretely as we could. So whenever it is convenient (and it usually is), Hilbert spaces become separable and C*-algebras become GCR. This practice probably creates an impression that nothing of value is known about other C*-algebras. Of course that is not true. But insofar as representations are con- cerned, we can point to the empirical fact that to this day no one has given a concrete parametric description of even the irreducible representations of any C*-algebra which is not GCR. Indeed, there is metamathematical evidence which strongly suggests that no one ever will (see the discussion at the end of Section 3. 4). Occasionally, when the idea behind the proof of a general theorem is exposed very clearly in a special case, we prove only the special case and relegate generalizations to the exercises. In effect, we have systematically eschewed the Bourbaki tradition. We have also tried to take into account the interests of a variety of readers. For example, the multiplicity theory for normal operators is
Pindex Textbook 1976
The information of publication is updating

書目名稱An Invitation to C*-Algebras影響因子(影響力)




書目名稱An Invitation to C*-Algebras影響因子(影響力)學(xué)科排名




書目名稱An Invitation to C*-Algebras網(wǎng)絡(luò)公開度




書目名稱An Invitation to C*-Algebras網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱An Invitation to C*-Algebras被引頻次




書目名稱An Invitation to C*-Algebras被引頻次學(xué)科排名




書目名稱An Invitation to C*-Algebras年度引用




書目名稱An Invitation to C*-Algebras年度引用學(xué)科排名




書目名稱An Invitation to C*-Algebras讀者反饋




書目名稱An Invitation to C*-Algebras讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:04:27 | 只看該作者
From Commutative Algebras to GCR Algebras,ented so as to obviously generalize the results of Section 2.2 which classify normal operators and representations of abelian .*-algebras. But in contrast with the commutative case, it is necessary here to make essential use of the material on Borel structures from Chapter 3.
板凳
發(fā)表于 2025-3-22 02:01:29 | 只看該作者
地板
發(fā)表于 2025-3-22 07:16:18 | 只看該作者
5#
發(fā)表于 2025-3-22 08:45:12 | 只看該作者
6#
發(fā)表于 2025-3-22 13:40:01 | 只看該作者
7#
發(fā)表于 2025-3-22 20:15:30 | 只看該作者
8#
發(fā)表于 2025-3-22 23:26:48 | 只看該作者
From Commutative Algebras to GCR Algebras,ented so as to obviously generalize the results of Section 2.2 which classify normal operators and representations of abelian .*-algebras. But in contrast with the commutative case, it is necessary here to make essential use of the material on Borel structures from Chapter 3.
9#
發(fā)表于 2025-3-23 04:00:09 | 只看該作者
Graduate Texts in Mathematicshttp://image.papertrans.cn/a/image/155633.jpg
10#
發(fā)表于 2025-3-23 05:35:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 14:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
嘉义县| 金川县| 古蔺县| 焉耆| 旅游| 高阳县| 思茅市| 凤翔县| 栖霞市| 太谷县| 南城县| 黄龙县| 锦州市| 平乐县| 鹤岗市| 茌平县| 黄大仙区| 巫溪县| 汪清县| 西昌市| 珲春市| 平山县| 昆山市| 汉源县| 连山| 亚东县| 西城区| 平邑县| 婺源县| 新郑市| 资兴市| 罗定市| 涪陵区| 潜江市| 桂东县| 七台河市| 遂平县| 神农架林区| 韩城市| 玛多县| 宽城|