找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introductory Guide to Computational Methods for the Solution of Physics Problems; With Emphasis on Spe George Rawitscher,Victo dos Santo

[復(fù)制鏈接]
樓主: MASS
11#
發(fā)表于 2025-3-23 10:55:23 | 只看該作者
https://doi.org/10.1007/978-3-322-98672-6er-Cromer method. The emphasis here is on algorithm errors, and an explanation of what is meant by the “order” of the error. We show that the Euler method introduces an error of order 2, denoted as . while the latter presents errors of order .. We finish the chapter by applying the methods to two im
12#
發(fā)表于 2025-3-23 15:36:16 | 只看該作者
13#
發(fā)表于 2025-3-23 21:49:43 | 只看該作者
14#
發(fā)表于 2025-3-23 23:53:49 | 只看該作者
https://doi.org/10.1007/978-3-642-71903-5pressions in terms of the powers of the variable ., where ., and the mesh points required for the Gauss–Chebyshev integration expression described in Chap.?.. We also point out the advantage of the expansion into this set of functions, as their truncation error is spread uniformly across the . inter
15#
發(fā)表于 2025-3-24 05:15:08 | 只看該作者
https://doi.org/10.1007/978-3-662-41281-7the advantages of working with the integral equation, called Lippmann–Schwinger (L–S). We show how a numerical solution of such an equation can be obtained by expanding the wave function in terms of Chebyshev polynomials, and give an example for a simple one-dimensional Schr?dinger equation. This me
16#
發(fā)表于 2025-3-24 07:08:22 | 只看該作者
17#
發(fā)表于 2025-3-24 12:43:14 | 只看該作者
Die Bestimmung der Umtriebszeitction is described in an efficient way by its amplitude .(.) and the wave phase .. Since each of these quantities vary monotonically and slowly with distance, they are much easier to calculate than the wave function itself. An iterative method to solve the non-linear equation for . is described, and
18#
發(fā)表于 2025-3-24 15:47:40 | 只看該作者
19#
發(fā)表于 2025-3-24 19:22:11 | 只看該作者
20#
發(fā)表于 2025-3-25 01:15:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 00:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桃园县| 广饶县| 西青区| 苗栗县| 东阳市| 浦城县| 江华| 金坛市| 石泉县| 壤塘县| 环江| 定结县| 敦煌市| 额尔古纳市| 银川市| 滦平县| 微博| 怀仁县| 历史| 德惠市| 大石桥市| 镇赉县| 阿拉尔市| 霍山县| 阿拉善左旗| 郓城县| 泸西县| 始兴县| 通州区| 郎溪县| 绥江县| 河池市| 体育| 台前县| 广东省| 彭阳县| 黄大仙区| 天等县| 甘泉县| 彭水| 彩票|