找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to the Theory of Multipliers; Ronald Larsen Book 1971 Springer-Verlag Berlin · Heidelberg 1971 Koordinatentransformation.M

[復(fù)制鏈接]
樓主: quick-relievers
21#
發(fā)表于 2025-3-25 04:16:24 | 只看該作者
https://doi.org/10.1007/978-3-642-92156-8 spaces. In this chapter we shall study a variety of topological linear spaces of functions and measures for which a characterization of the multipliers is relatively accessible. In addition to its intrinsic interest we hope that this material will illustrate some of the differences between the stud
22#
發(fā)表于 2025-3-25 08:52:55 | 只看該作者
https://doi.org/10.1007/978-3-642-91143-9vious chapters. In particular, we have already discussed to some extent the cases when .1 and . ∞. Consequently we shall now restrict our attention primarily to the values of . such that 1< . < ∞. We shall show in the following sections that the multipliers for .(.) can, in a certain sense, be repre
23#
發(fā)表于 2025-3-25 14:17:22 | 只看該作者
24#
發(fā)表于 2025-3-25 17:04:46 | 只看該作者
Fragestellungen und Untersuchungsmethoden, algebras. These algebras are similar to the group algebra ..(.) in a great many ways. In particular for noncompact groups we shall see that the algebras ..(.) and ..(.) have the same multipliers. However the algebras ..(.) are neither group nor . algebras. This leads to the observation that the nat
25#
發(fā)表于 2025-3-25 23:41:03 | 只看該作者
26#
發(fā)表于 2025-3-26 03:57:54 | 只看該作者
Prologue: The Multipliers for ,(,), describe those sequences {.} for which.is always the Fourier series of a periodic integrable function whenever.is such a Fourier series. Subsequently the notion has been employed in many other areas of harmonic analysis, such as the study of properties of the Fourier transformation and its extensio
27#
發(fā)表于 2025-3-26 07:35:55 | 只看該作者
The Multipliers for Commutative ,*-Algebras,s with the Banach algebra norm, b).c) .* . ≠ 0 if . ≠ 0 and d) <.,.> = <., .* .> for all ., ., .∈.. The standard example of an .*-algebra is the algebra .(.) for a compact group . with the usual convolution multiplication and scalar product. A general discussion of .*-algebras can be found in Loomis
28#
發(fā)表于 2025-3-26 11:10:49 | 只看該作者
29#
發(fā)表于 2025-3-26 14:13:39 | 只看該作者
30#
發(fā)表于 2025-3-26 20:31:11 | 只看該作者
,The Multipliers for the Pair (, (,), ,(,)), 1 ≦ ,, , ≦ ∞,re . ≠ .. The problem of describing the multipliers in this situation is equally if not more difficult than in the case . = .. In order to obtain a description of the multipliers as convolution operators we shall have to introduce a class of mathematical objects which properly contains the space of
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 11:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临清市| 棋牌| 无为县| 阿拉善左旗| 新干县| 大英县| 上虞市| 仙居县| 黄浦区| 定西市| 邻水| 台州市| 三原县| 北票市| 会东县| 安乡县| 富裕县| 铜梁县| 且末县| 蚌埠市| 达日县| 西丰县| 方城县| 环江| 宁波市| 登封市| 汉源县| 日喀则市| 交城县| 九台市| 曲阜市| 綦江县| 饶平县| 红河县| 根河市| 大埔区| 沙雅县| 澄迈县| 商丘市| 文水县| 陇南市|