找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to the Theory of Multipliers; Ronald Larsen Book 1971 Springer-Verlag Berlin · Heidelberg 1971 Koordinatentransformation.M

[復制鏈接]
樓主: quick-relievers
11#
發(fā)表于 2025-3-23 10:29:43 | 只看該作者
An Introduction to the Theory of Multipliers978-3-642-65030-7Series ISSN 0072-7830 Series E-ISSN 2196-9701
12#
發(fā)表于 2025-3-23 16:07:44 | 只看該作者
13#
發(fā)表于 2025-3-23 20:05:25 | 只看該作者
Die forstliche BestandesgründungOur purpose in this chapter is to present a development of much of the theory of multipliers for Banach algebras. It is neither exhaustive of the material nor is the development the most general one that could be made. Instead we have emphasized the problem of characterizing the multipliers of various abstract Banach algebras.
14#
發(fā)表于 2025-3-24 01:22:42 | 只看該作者
The General Theory of Multipliers,Our purpose in this chapter is to present a development of much of the theory of multipliers for Banach algebras. It is neither exhaustive of the material nor is the development the most general one that could be made. Instead we have emphasized the problem of characterizing the multipliers of various abstract Banach algebras.
15#
發(fā)表于 2025-3-24 02:36:38 | 只看該作者
The Multipliers for Commutative ,*-Algebras,s with the Banach algebra norm, b).c) .* . ≠ 0 if . ≠ 0 and d) <.,.> = <., .* .> for all ., ., .∈.. The standard example of an .*-algebra is the algebra .(.) for a compact group . with the usual convolution multiplication and scalar product. A general discussion of .*-algebras can be found in Loomis [1] and Naimark [1].
16#
發(fā)表于 2025-3-24 10:21:56 | 只看該作者
17#
發(fā)表于 2025-3-24 12:13:42 | 只看該作者
https://doi.org/10.1007/978-3-642-65030-7Koordinatentransformation; Microsoft Access; Multiplikator; Volume; character; commutative property; funct
18#
發(fā)表于 2025-3-24 17:56:47 | 只看該作者
978-3-642-65032-1Springer-Verlag Berlin · Heidelberg 1971
19#
發(fā)表于 2025-3-24 20:57:21 | 只看該作者
20#
發(fā)表于 2025-3-25 01:04:04 | 只看該作者
Die forstliche Bestandesgründungs with the Banach algebra norm, b).c) .* . ≠ 0 if . ≠ 0 and d) <.,.> = <., .* .> for all ., ., .∈.. The standard example of an .*-algebra is the algebra .(.) for a compact group . with the usual convolution multiplication and scalar product. A general discussion of .*-algebras can be found in Loomis
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 23:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
南安市| 威信县| 丰台区| 三穗县| 亚东县| 太仆寺旗| 元氏县| 青岛市| 察雅县| 陇南市| 长岛县| 六盘水市| 石林| 凌源市| 禹城市| 桐梓县| 溆浦县| 电白县| 高唐县| 肥乡县| 外汇| 尚义县| 青川县| 高青县| 彭水| 巴青县| 本溪市| 马关县| 古交市| 鹤壁市| 北京市| 休宁县| 屏边| 渝北区| 崇礼县| 沧州市| 长乐市| 白银市| 石柱| 石狮市| 友谊县|