找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to the Theory of Multipliers; Ronald Larsen Book 1971 Springer-Verlag Berlin · Heidelberg 1971 Koordinatentransformation.M

[復制鏈接]
樓主: quick-relievers
11#
發(fā)表于 2025-3-23 10:29:43 | 只看該作者
An Introduction to the Theory of Multipliers978-3-642-65030-7Series ISSN 0072-7830 Series E-ISSN 2196-9701
12#
發(fā)表于 2025-3-23 16:07:44 | 只看該作者
13#
發(fā)表于 2025-3-23 20:05:25 | 只看該作者
Die forstliche BestandesgründungOur purpose in this chapter is to present a development of much of the theory of multipliers for Banach algebras. It is neither exhaustive of the material nor is the development the most general one that could be made. Instead we have emphasized the problem of characterizing the multipliers of various abstract Banach algebras.
14#
發(fā)表于 2025-3-24 01:22:42 | 只看該作者
The General Theory of Multipliers,Our purpose in this chapter is to present a development of much of the theory of multipliers for Banach algebras. It is neither exhaustive of the material nor is the development the most general one that could be made. Instead we have emphasized the problem of characterizing the multipliers of various abstract Banach algebras.
15#
發(fā)表于 2025-3-24 02:36:38 | 只看該作者
The Multipliers for Commutative ,*-Algebras,s with the Banach algebra norm, b).c) .* . ≠ 0 if . ≠ 0 and d) <.,.> = <., .* .> for all ., ., .∈.. The standard example of an .*-algebra is the algebra .(.) for a compact group . with the usual convolution multiplication and scalar product. A general discussion of .*-algebras can be found in Loomis [1] and Naimark [1].
16#
發(fā)表于 2025-3-24 10:21:56 | 只看該作者
17#
發(fā)表于 2025-3-24 12:13:42 | 只看該作者
https://doi.org/10.1007/978-3-642-65030-7Koordinatentransformation; Microsoft Access; Multiplikator; Volume; character; commutative property; funct
18#
發(fā)表于 2025-3-24 17:56:47 | 只看該作者
978-3-642-65032-1Springer-Verlag Berlin · Heidelberg 1971
19#
發(fā)表于 2025-3-24 20:57:21 | 只看該作者
20#
發(fā)表于 2025-3-25 01:04:04 | 只看該作者
Die forstliche Bestandesgründungs with the Banach algebra norm, b).c) .* . ≠ 0 if . ≠ 0 and d) <.,.> = <., .* .> for all ., ., .∈.. The standard example of an .*-algebra is the algebra .(.) for a compact group . with the usual convolution multiplication and scalar product. A general discussion of .*-algebras can be found in Loomis
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 23:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
象山县| 仙居县| 双辽市| 宝兴县| 远安县| 奉化市| 玛曲县| 丹寨县| 尚志市| 清徐县| 峨山| 鄂托克前旗| 西宁市| 凤城市| 峨边| 新兴县| 莱芜市| 东丰县| 长沙县| 河源市| 河南省| 苏尼特右旗| 调兵山市| 海淀区| 芒康县| 肥城市| 临西县| 淮北市| 赤水市| 右玉县| 资兴市| 沙河市| 无棣县| 商都县| 高阳县| 英山县| 商城县| 高安市| 微山县| 闻喜县| 中阳县|