找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to the Theory of Groups; Joseph J. Rotman Textbook 1995Latest edition Springer Science+Business Media New York 1995 Abelia

[復制鏈接]
樓主: Thoracic
11#
發(fā)表于 2025-3-23 10:12:48 | 只看該作者
https://doi.org/10.1007/978-3-531-91657-6The notion of generators and relations can be extended from abelian groups to arbitrary groups once we have a nonabelian analogue of free abelian groups. We use the property appearing in Theorem 10.11 as our starting point.
12#
發(fā)表于 2025-3-23 16:03:13 | 只看該作者
13#
發(fā)表于 2025-3-23 21:52:52 | 只看該作者
14#
發(fā)表于 2025-3-24 02:15:04 | 只看該作者
Symmetric Groups and ,-Sets,The definition of group arose from fundamental properties of the symmetric group S.. But there is another important feature of S.: its elements arc functions acting on some underlying set, and this aspect is not explicit in our presentation so far. The notion of . is the appropriate abstraction of this idea.
15#
發(fā)表于 2025-3-24 02:37:57 | 只看該作者
The Sylow Theorems,The order of a group . has consequences for its structure. A rough rule of thumb is that the more complicated the prime factorization of |.|, the more complicated the group. In particular, the fewer the number of distinct prime factors in |G|, the more tractible it is. We now study the “l(fā)ocal” case when only one prime divides |.|.
16#
發(fā)表于 2025-3-24 08:39:06 | 只看該作者
Normal Series,We begin this chapter with a brief history of the study of roots of polynomials. Mathematicians of the Middle Ages, and probably those in Babylonia, knew the . giving the roots of a quadratic polynomial .(.) = .. + . + .. Setting . transforms .(.) into a polynomial g(.) with no . term:
17#
發(fā)表于 2025-3-24 11:38:09 | 只看該作者
Extensions and Cohomology,A group . having a normal subgroup . can be “factored” into . and .. The study of extensions involves the inverse question: Given . ? . and ., to what extent can one recapture .?
18#
發(fā)表于 2025-3-24 15:01:36 | 只看該作者
Abelian Groups,Commutativity is a strong hypothesis, so strong that all finite abelian groups are completely classified. In this chapter, we focus on finitely generated and, more generally, countable abelian groups.
19#
發(fā)表于 2025-3-24 20:39:07 | 只看該作者
Free Groups and Free Products,The notion of generators and relations can be extended from abelian groups to arbitrary groups once we have a nonabelian analogue of free abelian groups. We use the property appearing in Theorem 10.11 as our starting point.
20#
發(fā)表于 2025-3-25 03:12:45 | 只看該作者
The Word Problem,Novikov, Boone, and Britton proved, independently, that there is a finitely presented group ? for which no computer can ever exist that can decide whether an arbitrary word on the generators of ? is 1. We shall prove this remarkable result in this chapter.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 12:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
永济市| 齐河县| 新宁县| 临夏县| 防城港市| 岚皋县| 榆中县| 河津市| 芦溪县| 长阳| 新丰县| 宁武县| 民乐县| 邹城市| 泽普县| 隆林| 保德县| 任丘市| 铁力市| 兰西县| 长春市| 杭州市| 营口市| 高碑店市| 孝义市| 松江区| 台南市| 馆陶县| 个旧市| 泸州市| 鲁山县| 泰州市| 库尔勒市| 宜城市| 七台河市| 沙坪坝区| 岐山县| 应城市| 高州市| 德钦县| 东台市|