找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to the Theory of Functional Equations and Inequalities; Cauchy‘s Equation an Marek Kuczma,Attila Gilányi Textbook 2009Lates

[復(fù)制鏈接]
樓主: 誤解
31#
發(fā)表于 2025-3-26 23:48:46 | 只看該作者
32#
發(fā)表于 2025-3-27 04:52:55 | 只看該作者
33#
發(fā)表于 2025-3-27 07:32:51 | 只看該作者
AlgebraLet . be a field (cf. 4.7), and let . be a set endowed with two operations: the addition of elements of ., and the multiplication of elements of . by elements of . such that ., +) is a commutative group (i.e., fulfils conditions (2.9.1)–(2.9.4); cf. 4.5), and moreover . for every .,. for every .,. for every ..
34#
發(fā)表于 2025-3-27 09:31:41 | 只看該作者
35#
發(fā)表于 2025-3-27 17:05:11 | 只看該作者
Elementary Properties of Convex FunctionsIn this chapter we discuss some properties of convex functions connected with their boundedness and continuity. We start with the following Lemma 6.1.1. . ? ?. .→ ? . . . ∈ . ∈ ?. . ∈ ? . 0 < . < . ± . ∈ ..
36#
發(fā)表于 2025-3-27 18:34:45 | 只看該作者
Continuous Convex FunctionsLet . ? ?. be a convex and open set. In 5.3 we saw that a convex function f : . → ? fulfills the inequality . for all . ∈ . and all λ ∈ ? ∩ [0, 1]. It was also pointed out that if, moreover, . is continuous, then inequality (7.1.1) holds actually for all real λ ∈ [0, 1].
37#
發(fā)表于 2025-3-28 00:01:10 | 只看該作者
InequalitiesSince the convex functions are defined by a functional inequality, it is not surprising that this notion will lead to a number of interesting and important inequalities. Some inequalities connected with the notion of convexity will be presented in this chapter.
38#
發(fā)表于 2025-3-28 02:11:01 | 只看該作者
Further Properties of Additive Functions and Convex FunctionsLet . ? ?. be a convex and open set, and let f : . → ? be a convex function. Let . be the lower hull of f (cf. 6.3). By Theorem 6.3.1 either . . = -∞ for all . ∈ ., or . : . → ∝ is a continuous and convex function.
39#
發(fā)表于 2025-3-28 07:31:12 | 只看該作者
40#
發(fā)表于 2025-3-28 12:53:41 | 只看該作者
Derivations and AutomorphismsIn this chapter we will deal with functions satisfying the Cauchy equation (5.2.1) and also, simultaneously, another equations of a similar type.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 17:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
梨树县| 崇义县| 金平| 重庆市| 沁水县| 成安县| 六枝特区| 纳雍县| 绥阳县| 玉山县| 托克逊县| 清丰县| 齐齐哈尔市| 凭祥市| 拜泉县| 自治县| 潞城市| 汕头市| 莫力| 方正县| 瑞金市| 陆良县| 延庆县| 邳州市| 桐乡市| 崇阳县| 新宾| 张掖市| 曲周县| 内乡县| 甘肃省| 涟水县| 厦门市| 福安市| 京山县| 岳阳县| 泸州市| 工布江达县| 罗田县| 桂东县| 金寨县|