找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to the Theory of Functional Equations and Inequalities; Cauchy‘s Equation an Marek Kuczma,Attila Gilányi Textbook 2009Lates

[復(fù)制鏈接]
樓主: 誤解
21#
發(fā)表于 2025-3-25 04:25:25 | 只看該作者
22#
發(fā)表于 2025-3-25 09:27:26 | 只看該作者
https://doi.org/10.1007/978-3-8350-9566-3Let . ? ? be an arbitrary set. A non-empty set . ? ?. is called . iff ..
23#
發(fā)表于 2025-3-25 15:29:47 | 只看該作者
Information - Organisation - ProduktionIn this chapter we discuss some properties of convex functions connected with their boundedness and continuity. We start with the following Lemma 6.1.1. . ? ?. .→ ? . . . ∈ . ∈ ?. . ∈ ? . 0 < . < . ± . ∈ ..
24#
發(fā)表于 2025-3-25 16:33:41 | 只看該作者
25#
發(fā)表于 2025-3-25 20:33:47 | 只看該作者
https://doi.org/10.1007/978-3-642-83229-1Since the convex functions are defined by a functional inequality, it is not surprising that this notion will lead to a number of interesting and important inequalities. Some inequalities connected with the notion of convexity will be presented in this chapter.
26#
發(fā)表于 2025-3-26 03:28:16 | 只看該作者
27#
發(fā)表于 2025-3-26 07:47:24 | 只看該作者
28#
發(fā)表于 2025-3-26 09:19:57 | 只看該作者
29#
發(fā)表于 2025-3-26 14:04:10 | 只看該作者
Die farbigen D?mmerungserscheinungenLet . ? ?. be a convex set, let f : . → ? be an arbitrary function, and let . ∈ ?. be arbitrary. The difference operator Δh with the span . is defined by the equality ..
30#
發(fā)表于 2025-3-26 17:57:16 | 只看該作者
https://doi.org/10.1007/978-3-0348-5360-6The Jensen inequality (5.3.1) is not the natural counterpart of the Cauchy equation (5.2.1). The natural counterpart of the Cauchy equation would be the inequality ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 21:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凉城县| 广灵县| 普定县| 小金县| 武川县| 定襄县| 大城县| 新营市| 姚安县| 财经| 花垣县| 钟山县| 龙岩市| 土默特左旗| 樟树市| 依安县| 赤峰市| 资源县| 浮梁县| 离岛区| 睢宁县| 朔州市| 咸阳市| 札达县| 武乡县| 山东省| 化德县| 横峰县| 巧家县| 富平县| 滨州市| 神农架林区| 高邮市| 太康县| 城市| 雷山县| 嘉荫县| 红桥区| 南宫市| 庄浪县| 华安县|