找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to the Mathematical Theory of the Navier-Stokes Equations; Volume I: Linearised Giovanni P. Galdi Textbook 19941st edition

[復(fù)制鏈接]
樓主: Eisenhower
21#
發(fā)表于 2025-3-25 04:24:03 | 只看該作者
22#
發(fā)表于 2025-3-25 07:31:04 | 只看該作者
23#
發(fā)表于 2025-3-25 12:08:22 | 只看該作者
Steady Oseen Flow in Exterior Domains,ct . moving with a small, constant velocity in a viscous liquid, at least at large distances from . where the viscous effects become less important. In particular, for . a ball, the explicit solution one finds (see (V.0.3)) exhibits no wake behind the body and is, therefore, unacceptable from the ph
24#
發(fā)表于 2025-3-25 19:33:02 | 只看該作者
0081-3877 ough the range of their applicability to concrete problems has now been clearly recognised to be limited, as my dear friend and bright colleague K.R. Ra- jagopal has showed me by several examples during the past six years, the mathematical questions that remain open are of such a fascinating and cha
25#
發(fā)表于 2025-3-25 20:55:02 | 只看該作者
Zielsteuerung (Target Controlling)o give an exhaustive treatment of the subject, since this is beyond the scope of the book. Therefore, the reader who wants more details is referred to the specialised literature quoted throughout. As a rule, we only give proofs where they are elementary or when the result is new or does not seem to be widely known.
26#
發(fā)表于 2025-3-26 02:32:21 | 只看該作者
Zielsteuerung (Target Controlling)ed as suitable subspaces of . of [..]., [..]., and [..]., respectively, . ≥ 2. Actually, it is . the solenoidality restriction that makes these spaces peculiar and, as we shall see, poses problems that otherwise would not arise.
27#
發(fā)表于 2025-3-26 07:36:07 | 只看該作者
28#
發(fā)表于 2025-3-26 11:48:43 | 只看該作者
Basic Function Spaces and Related Inequalities,o give an exhaustive treatment of the subject, since this is beyond the scope of the book. Therefore, the reader who wants more details is referred to the specialised literature quoted throughout. As a rule, we only give proofs where they are elementary or when the result is new or does not seem to be widely known.
29#
發(fā)表于 2025-3-26 13:45:33 | 只看該作者
30#
發(fā)表于 2025-3-26 16:58:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 07:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
察隅县| 黄梅县| 遂昌县| 朝阳市| 双桥区| 澄江县| 印江| 顺义区| 蒙阴县| 当雄县| 宿迁市| 郎溪县| 清河县| 新宁县| 岢岚县| 荆门市| 突泉县| 资中县| 延庆县| 仪征市| 岗巴县| 成安县| 襄樊市| 高淳县| 遵义县| 石楼县| 温泉县| 永年县| 长兴县| 诸城市| 且末县| 五华县| 依安县| 武夷山市| 桂林市| 北票市| 太仆寺旗| 北票市| 漳州市| 全州县| 凌云县|