找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to the Mathematical Theory of the Navier-Stokes Equations; Volume I: Linearised Giovanni P. Galdi Textbook 19941st edition

[復(fù)制鏈接]
樓主: Eisenhower
21#
發(fā)表于 2025-3-25 04:24:03 | 只看該作者
22#
發(fā)表于 2025-3-25 07:31:04 | 只看該作者
23#
發(fā)表于 2025-3-25 12:08:22 | 只看該作者
Steady Oseen Flow in Exterior Domains,ct . moving with a small, constant velocity in a viscous liquid, at least at large distances from . where the viscous effects become less important. In particular, for . a ball, the explicit solution one finds (see (V.0.3)) exhibits no wake behind the body and is, therefore, unacceptable from the ph
24#
發(fā)表于 2025-3-25 19:33:02 | 只看該作者
0081-3877 ough the range of their applicability to concrete problems has now been clearly recognised to be limited, as my dear friend and bright colleague K.R. Ra- jagopal has showed me by several examples during the past six years, the mathematical questions that remain open are of such a fascinating and cha
25#
發(fā)表于 2025-3-25 20:55:02 | 只看該作者
Zielsteuerung (Target Controlling)o give an exhaustive treatment of the subject, since this is beyond the scope of the book. Therefore, the reader who wants more details is referred to the specialised literature quoted throughout. As a rule, we only give proofs where they are elementary or when the result is new or does not seem to be widely known.
26#
發(fā)表于 2025-3-26 02:32:21 | 只看該作者
Zielsteuerung (Target Controlling)ed as suitable subspaces of . of [..]., [..]., and [..]., respectively, . ≥ 2. Actually, it is . the solenoidality restriction that makes these spaces peculiar and, as we shall see, poses problems that otherwise would not arise.
27#
發(fā)表于 2025-3-26 07:36:07 | 只看該作者
28#
發(fā)表于 2025-3-26 11:48:43 | 只看該作者
Basic Function Spaces and Related Inequalities,o give an exhaustive treatment of the subject, since this is beyond the scope of the book. Therefore, the reader who wants more details is referred to the specialised literature quoted throughout. As a rule, we only give proofs where they are elementary or when the result is new or does not seem to be widely known.
29#
發(fā)表于 2025-3-26 13:45:33 | 只看該作者
30#
發(fā)表于 2025-3-26 16:58:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 07:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黔西| 张家界市| 巧家县| 项城市| 招远市| 遵义市| 泰和县| 兴隆县| 湘西| 黄梅县| 灌云县| 汉沽区| 清涧县| 盱眙县| 阿克陶县| 河池市| 陈巴尔虎旗| 正定县| 宁乡县| 本溪| 新泰市| 淮滨县| 北碚区| 紫阳县| 武邑县| 瑞安市| 龙川县| 南漳县| 东源县| 郎溪县| 长垣县| 田阳县| 越西县| 甘洛县| 兴海县| 长治市| 哈尔滨市| 廉江市| 北流市| 巧家县| 富民县|