找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to the Mathematical Theory of Dynamic Materials; Konstantin A. Lurie Book 20071st edition Springer-Verlag US 2007 Mathemat

[復(fù)制鏈接]
查看: 8222|回復(fù): 36
樓主
發(fā)表于 2025-3-21 17:19:37 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱(chēng)An Introduction to the Mathematical Theory of Dynamic Materials
影響因子2023Konstantin A. Lurie
視頻videohttp://file.papertrans.cn/156/155566/155566.mp4
發(fā)行地址Novel exposition of new mathematical theory developed by the author
學(xué)科分類(lèi)Advances in Mechanics and Mathematics
圖書(shū)封面Titlebook: An Introduction to the Mathematical Theory of Dynamic Materials;  Konstantin A. Lurie Book 20071st edition Springer-Verlag US 2007 Mathemat
影響因子This book has emerged from the study of a new concept in material science that has been realized about a decade ago. Before that, I had been working for more than 20 years on conventional composites assembled in space and therefore adjusted to optimal material design in statics. The reason for that adjustmentisthatsuchcompositesappearedtobecomenecessaryparticipants in almost any optimal material design related to a state of equilibrium. A theoretical study of conventional composites has been very extensive over a long period of time. It received stimulation through many engineering applications, and some of the results have become a part of modern industrial technology. But again, the ordinary composites are all about statics, or, at the utmost, are related to control over the free vibration modes, a situation conceptually close to a static equilibrium. The world of dynamics appears to be quite di?erent in this aspect. When it comes to motion, the immovable material formations distributed in space alone become insu?cient as the elements of design because they are incapable of getting fully adjusted to the temporal variation in the environment. To be able to adequately handle dynami
Pindex Book 20071st edition
The information of publication is updating

書(shū)目名稱(chēng)An Introduction to the Mathematical Theory of Dynamic Materials影響因子(影響力)




書(shū)目名稱(chēng)An Introduction to the Mathematical Theory of Dynamic Materials影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)An Introduction to the Mathematical Theory of Dynamic Materials網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)An Introduction to the Mathematical Theory of Dynamic Materials網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)An Introduction to the Mathematical Theory of Dynamic Materials被引頻次




書(shū)目名稱(chēng)An Introduction to the Mathematical Theory of Dynamic Materials被引頻次學(xué)科排名




書(shū)目名稱(chēng)An Introduction to the Mathematical Theory of Dynamic Materials年度引用




書(shū)目名稱(chēng)An Introduction to the Mathematical Theory of Dynamic Materials年度引用學(xué)科排名




書(shū)目名稱(chēng)An Introduction to the Mathematical Theory of Dynamic Materials讀者反饋




書(shū)目名稱(chēng)An Introduction to the Mathematical Theory of Dynamic Materials讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:55:33 | 只看該作者
https://doi.org/10.1007/0-387-38280-1Mathematica; dielectrics; dynamics; optimization; statics; variable; vibration; partial differential equati
板凳
發(fā)表于 2025-3-22 02:59:43 | 只看該作者
Springer-Verlag US 2007
地板
發(fā)表于 2025-3-22 05:01:01 | 只看該作者
Konstantin A. LurieNovel exposition of new mathematical theory developed by the author
5#
發(fā)表于 2025-3-22 10:21:51 | 只看該作者
6#
發(fā)表于 2025-3-22 16:40:29 | 只看該作者
Dynamic Materials in Electrodynamics of Moving Dielectrics,
7#
發(fā)表于 2025-3-22 17:36:47 | 只看該作者
8#
發(fā)表于 2025-3-23 01:07:57 | 只看該作者
9#
發(fā)表于 2025-3-23 03:13:34 | 只看該作者
An Introduction to the Mathematical Theory of Dynamic Materials
10#
發(fā)表于 2025-3-23 07:08:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 13:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宜丰县| 昌都县| 鲁山县| 登封市| 蓬莱市| 泰兴市| 宣汉县| 阳谷县| 天祝| 贵港市| 阿克陶县| 昔阳县| 五莲县| 金坛市| 黎川县| 肇州县| 仪征市| 北票市| 乌拉特中旗| 常宁市| 潮安县| 枣庄市| 新河县| 平利县| 陇西县| 昭觉县| 锦屏县| 邵东县| 固安县| 新竹市| 英山县| 铅山县| 贵定县| 视频| 丽江市| 收藏| 河曲县| 文昌市| 绥中县| 怀远县| 喜德县|