找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to the K?hler-Ricci Flow; Sebastien Boucksom,Philippe Eyssidieux,Vincent Gue Book 2013 Springer International Publishing S

[復制鏈接]
樓主: minuscule
11#
發(fā)表于 2025-3-23 09:41:42 | 只看該作者
,Convergence of the K?hler–Ricci Flow on a K?hler–Einstein Fano Manifold, automorphism group, the normalized K?hler–Ricci flow converges smoothly to the unique K?hler–Einstein metric. We also explain an alternative approach due to Berman–Boucksom–Eyssidieux–Guedj–Zeriahi, which only yields weak convergence but also applies to Fano varieties with log terminal singularitie
12#
發(fā)表于 2025-3-23 16:59:54 | 只看該作者
Einleitung und Problemstellung,efficients, some existence, uniqueness and regularity results for viscosity solutions of fully nonlinear parabolic equations (including degenerate ones), the Harnack inequality for fully nonlinear uniformly parabolic equations.
13#
發(fā)表于 2025-3-23 20:03:27 | 只看該作者
14#
發(fā)表于 2025-3-23 22:41:05 | 只看該作者
15#
發(fā)表于 2025-3-24 06:13:53 | 只看該作者
,Technologien für Digitalisierungsl?sungen,F in its first 20 years (1984–2003), especially an essentially self-contained exposition of Perelman’s uniform estimates on the scalar curvature, the diameter, and the Ricci potential function for the normalized K?hler–Ricci flow (NKRF), including the monotonicity of Perelman’s .-entropy and .-nonco
16#
發(fā)表于 2025-3-24 09:04:11 | 只看該作者
Roadmap einer nachhaltigen Digitalisierung, automorphism group, the normalized K?hler–Ricci flow converges smoothly to the unique K?hler–Einstein metric. We also explain an alternative approach due to Berman–Boucksom–Eyssidieux–Guedj–Zeriahi, which only yields weak convergence but also applies to Fano varieties with log terminal singularitie
17#
發(fā)表于 2025-3-24 14:04:16 | 只看該作者
18#
發(fā)表于 2025-3-24 15:18:23 | 只看該作者
19#
發(fā)表于 2025-3-24 19:52:25 | 只看該作者
20#
發(fā)表于 2025-3-25 00:35:35 | 只看該作者
Roadmap einer nachhaltigen Digitalisierung, automorphism group, the normalized K?hler–Ricci flow converges smoothly to the unique K?hler–Einstein metric. We also explain an alternative approach due to Berman–Boucksom–Eyssidieux–Guedj–Zeriahi, which only yields weak convergence but also applies to Fano varieties with log terminal singularities.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-10 22:06
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
密云县| 望都县| 贡觉县| 大同市| 海淀区| 嵊州市| 威海市| 鄂托克前旗| 湖口县| 承德市| 金堂县| 乌兰察布市| 会昌县| 彩票| 准格尔旗| 洛隆县| 那曲县| 深圳市| 高碑店市| 屯门区| 洛阳市| 西乌| 南投市| 达拉特旗| 静海县| 凭祥市| 沽源县| 同江市| 华坪县| 湖北省| 申扎县| 合水县| 黑山县| 郑州市| 安乡县| 固镇县| 通江县| 江北区| 雅安市| 盈江县| 扶风县|