找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to the Kolmogorov–Bernoulli Equivalence; Gabriel Ponce,Régis Var?o Book 2019 The Author(s), under exclusive licence to Spr

[復(fù)制鏈接]
樓主: estrange
11#
發(fā)表于 2025-3-23 11:11:24 | 只看該作者
https://doi.org/10.1007/978-3-531-90649-2is chapter is to show that Kolmogorov and Bernoulli property can be obtained for a much more general class of dynamical systems, namely those admitting a global uniform hyperbolic behavior, i.e., the Anosov systems (Definition 4.1). Anosov systems play a crucial role in smooth ergodic theory being t
12#
發(fā)表于 2025-3-23 15:31:57 | 只看該作者
13#
發(fā)表于 2025-3-23 20:42:07 | 只看該作者
Introduction,c hierarchy of measure preserving transformations and quickly discuss the problem of detecting conditions under which the Kolmogorov property is promoted to the Bernoulli property. In particular the method introduced by Ornstein and Weiss is of particular interest for our context (smooth dynamics).
14#
發(fā)表于 2025-3-23 23:34:30 | 只看該作者
15#
發(fā)表于 2025-3-24 04:16:45 | 只看該作者
16#
發(fā)表于 2025-3-24 07:49:41 | 只看該作者
17#
發(fā)表于 2025-3-24 11:49:46 | 只看該作者
State of the Art,ve a smooth measure and admit some level of hyperbolicity. We define the class of non-uniformly hyperbolic diffeomorphisms (resp. flows), the class of smooth maps (resp. flows) with singularities, and the class of partially hyperbolic diffeomorphisms derived from Anosov, and present the state of art
18#
發(fā)表于 2025-3-24 15:53:19 | 只看該作者
19#
發(fā)表于 2025-3-24 21:26:08 | 只看該作者
20#
發(fā)表于 2025-3-24 23:09:04 | 只看該作者
2191-8198 ith this type of presentation, nonspecialists and young researchers in dynamical systems may be encouraged to pursue problems in this area..978-3-030-27389-7978-3-030-27390-3Series ISSN 2191-8198 Series E-ISSN 2191-8201
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 05:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南郑县| 卓资县| 托克托县| 蒲城县| 庆元县| 化隆| 辽源市| 米易县| 福安市| 平阳县| 邓州市| 息烽县| 绥宁县| 黑山县| 山阳县| 上犹县| 贡山| 阳春市| 五华县| 包头市| 辽中县| 巴东县| 尚义县| 万年县| 富川| 新竹县| 许昌市| 娱乐| 齐河县| 新竹市| 德州市| 信丰县| 开封市| 福海县| 瑞安市| 年辖:市辖区| 八宿县| 瑞安市| 灵台县| 宁河县| 民权县|