找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to the Kolmogorov–Bernoulli Equivalence; Gabriel Ponce,Régis Var?o Book 2019 The Author(s), under exclusive licence to Spr

[復(fù)制鏈接]
樓主: estrange
11#
發(fā)表于 2025-3-23 11:11:24 | 只看該作者
https://doi.org/10.1007/978-3-531-90649-2is chapter is to show that Kolmogorov and Bernoulli property can be obtained for a much more general class of dynamical systems, namely those admitting a global uniform hyperbolic behavior, i.e., the Anosov systems (Definition 4.1). Anosov systems play a crucial role in smooth ergodic theory being t
12#
發(fā)表于 2025-3-23 15:31:57 | 只看該作者
13#
發(fā)表于 2025-3-23 20:42:07 | 只看該作者
Introduction,c hierarchy of measure preserving transformations and quickly discuss the problem of detecting conditions under which the Kolmogorov property is promoted to the Bernoulli property. In particular the method introduced by Ornstein and Weiss is of particular interest for our context (smooth dynamics).
14#
發(fā)表于 2025-3-23 23:34:30 | 只看該作者
15#
發(fā)表于 2025-3-24 04:16:45 | 只看該作者
16#
發(fā)表于 2025-3-24 07:49:41 | 只看該作者
17#
發(fā)表于 2025-3-24 11:49:46 | 只看該作者
State of the Art,ve a smooth measure and admit some level of hyperbolicity. We define the class of non-uniformly hyperbolic diffeomorphisms (resp. flows), the class of smooth maps (resp. flows) with singularities, and the class of partially hyperbolic diffeomorphisms derived from Anosov, and present the state of art
18#
發(fā)表于 2025-3-24 15:53:19 | 只看該作者
19#
發(fā)表于 2025-3-24 21:26:08 | 只看該作者
20#
發(fā)表于 2025-3-24 23:09:04 | 只看該作者
2191-8198 ith this type of presentation, nonspecialists and young researchers in dynamical systems may be encouraged to pursue problems in this area..978-3-030-27389-7978-3-030-27390-3Series ISSN 2191-8198 Series E-ISSN 2191-8201
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 05:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
视频| 门头沟区| 青川县| 军事| 大连市| 宜昌市| 琼海市| 余干县| 宿州市| 康保县| 云南省| 离岛区| 庆城县| 芜湖县| 柏乡县| 大埔县| 维西| 金塔县| 扶沟县| 泽库县| 岳阳市| 北川| 平顺县| 汝阳县| 华坪县| 墨脱县| 阳原县| 家居| 定结县| 青铜峡市| 龙游县| 亚东县| 米林县| 资阳市| 防城港市| 崇左市| 天柱县| 阿坝县| 灵宝市| 佛山市| 三门峡市|