找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to the Geometry of Numbers; J. W. S. Cassels Book 1997 Springer-Verlag Berlin Heidelberg 1997 Diophantine approximation.Pr

[復制鏈接]
樓主: affected
11#
發(fā)表于 2025-3-23 11:43:39 | 只看該作者
https://doi.org/10.1007/978-3-476-04103-6 .-dimensional euclidean space is symmetric about the origin (i.e. contains — . when it contains .) and convex [i.e. contains the whole line-segment. + (1 – λ). (0 ≦ λ ≦ 1).when it contains . and.] and has volume .>2., then it contains an integral point . other than the origin. In this way we have a
12#
發(fā)表于 2025-3-23 17:40:15 | 只看該作者
Die Kurzgeschichte im Schulunterricht,hat is meant by two lattices Λ and . being near to each other; and this is done by means of homogeneous linear transformations. A homogeneous linear transformation .=. of .-dimensional euclidean space into itself is said to be near to identity transformation if the coefficients τ. in.are near those
13#
發(fā)表于 2025-3-23 19:28:50 | 只看該作者
14#
發(fā)表于 2025-3-23 22:23:45 | 只看該作者
15#
發(fā)表于 2025-3-24 04:05:46 | 只看該作者
16#
發(fā)表于 2025-3-24 09:00:57 | 只看該作者
17#
發(fā)表于 2025-3-24 14:17:16 | 只看該作者
978-3-540-61788-4Springer-Verlag Berlin Heidelberg 1997
18#
發(fā)表于 2025-3-24 18:19:20 | 只看該作者
,Gegner und Verbündete in der Kohlenkrise,In this chapter we introduce the most important concept in the geometry of numbers, that of a lattice, and develop some of its basic properties. The contents of this chapter, except § 2.4 and § 5, are fundamental for almost everything that follows.
19#
發(fā)表于 2025-3-24 20:53:12 | 只看該作者
https://doi.org/10.1007/978-3-476-04103-6In this chapter we introduce a number of concepts which are useful tools in all that follows.
20#
發(fā)表于 2025-3-25 00:07:21 | 只看該作者
Grundfragen des RundfunkmarktesFor some purposes one requires to know not merely that a lattice Λ has a point in a set ., but that it has a number of linearly independent points in ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 12:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
十堰市| 内丘县| 河北省| 固阳县| 崇仁县| 东兴市| 孟村| 新民市| 平和县| 玉山县| 隆回县| 尼木县| 清徐县| 高平市| 吉木萨尔县| 青神县| 城口县| 佛冈县| 洪湖市| 娄烦县| 永顺县| 临西县| 黔江区| 北京市| 兴山县| 宁陕县| 马山县| 临城县| 安多县| 泗阳县| 忻城县| 镇安县| 山阴县| 滕州市| 理塘县| 高陵县| 大连市| 扎赉特旗| 辰溪县| 乌兰浩特市| 盘山县|