找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to the Geometry of Numbers; J. W. S. Cassels Book 1997 Springer-Verlag Berlin Heidelberg 1997 Diophantine approximation.Pr

[復制鏈接]
樓主: affected
11#
發(fā)表于 2025-3-23 11:43:39 | 只看該作者
https://doi.org/10.1007/978-3-476-04103-6 .-dimensional euclidean space is symmetric about the origin (i.e. contains — . when it contains .) and convex [i.e. contains the whole line-segment. + (1 – λ). (0 ≦ λ ≦ 1).when it contains . and.] and has volume .>2., then it contains an integral point . other than the origin. In this way we have a
12#
發(fā)表于 2025-3-23 17:40:15 | 只看該作者
Die Kurzgeschichte im Schulunterricht,hat is meant by two lattices Λ and . being near to each other; and this is done by means of homogeneous linear transformations. A homogeneous linear transformation .=. of .-dimensional euclidean space into itself is said to be near to identity transformation if the coefficients τ. in.are near those
13#
發(fā)表于 2025-3-23 19:28:50 | 只看該作者
14#
發(fā)表于 2025-3-23 22:23:45 | 只看該作者
15#
發(fā)表于 2025-3-24 04:05:46 | 只看該作者
16#
發(fā)表于 2025-3-24 09:00:57 | 只看該作者
17#
發(fā)表于 2025-3-24 14:17:16 | 只看該作者
978-3-540-61788-4Springer-Verlag Berlin Heidelberg 1997
18#
發(fā)表于 2025-3-24 18:19:20 | 只看該作者
,Gegner und Verbündete in der Kohlenkrise,In this chapter we introduce the most important concept in the geometry of numbers, that of a lattice, and develop some of its basic properties. The contents of this chapter, except § 2.4 and § 5, are fundamental for almost everything that follows.
19#
發(fā)表于 2025-3-24 20:53:12 | 只看該作者
https://doi.org/10.1007/978-3-476-04103-6In this chapter we introduce a number of concepts which are useful tools in all that follows.
20#
發(fā)表于 2025-3-25 00:07:21 | 只看該作者
Grundfragen des RundfunkmarktesFor some purposes one requires to know not merely that a lattice Λ has a point in a set ., but that it has a number of linearly independent points in ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 12:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
塔城市| 吉木乃县| 来安县| 建德市| 绥江县| 临颍县| 来宾市| 雷波县| 慈溪市| 谷城县| 集贤县| 凉山| 屯昌县| 康马县| 保康县| 阳春市| 平邑县| 庆云县| 增城市| 沾益县| 瓮安县| 仪征市| 贡觉县| 策勒县| 华蓥市| 弥渡县| 大竹县| 娄烦县| 黄冈市| 舟曲县| 紫阳县| 宜兴市| 健康| 蕲春县| 延津县| 尼木县| 逊克县| 平原县| 浮山县| 沭阳县| 志丹县|