找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to the Geometry and Topology of Fluid Flows; Renzo L. Ricca Book 2001 Springer Science+Business Media Dordrecht 2001 calcu

[復(fù)制鏈接]
查看: 51868|回復(fù): 59
樓主
發(fā)表于 2025-3-21 16:51:26 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱An Introduction to the Geometry and Topology of Fluid Flows
影響因子2023Renzo L. Ricca
視頻videohttp://file.papertrans.cn/156/155550/155550.mp4
學(xué)科分類NATO Science Series II: Mathematics, Physics and Chemistry
圖書封面Titlebook: An Introduction to the Geometry and Topology of Fluid Flows;  Renzo L. Ricca Book 2001 Springer Science+Business Media Dordrecht 2001 calcu
影響因子Leading experts present a unique, invaluable introduction tothe study of the geometry and typology of fluid flows. From basicmotions on curves and surfaces to the recent developments in knots andlinks, the reader is gradually led to explore the fascinating world ofgeometric and topological fluid mechanics. .Geodesics and chaotic orbits, magnetic knots and vortex links,continual flows and singularities become alive with more than 160figures and examples. .In the opening article, H. K. Moffatt sets the pace, proposing eightoutstanding problems for the 21st century. The book goes on to provideconcepts and techniques for tackling these and many other interestingopen problems.
Pindex Book 2001
The information of publication is updating

書目名稱An Introduction to the Geometry and Topology of Fluid Flows影響因子(影響力)




書目名稱An Introduction to the Geometry and Topology of Fluid Flows影響因子(影響力)學(xué)科排名




書目名稱An Introduction to the Geometry and Topology of Fluid Flows網(wǎng)絡(luò)公開(kāi)度




書目名稱An Introduction to the Geometry and Topology of Fluid Flows網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱An Introduction to the Geometry and Topology of Fluid Flows被引頻次




書目名稱An Introduction to the Geometry and Topology of Fluid Flows被引頻次學(xué)科排名




書目名稱An Introduction to the Geometry and Topology of Fluid Flows年度引用




書目名稱An Introduction to the Geometry and Topology of Fluid Flows年度引用學(xué)科排名




書目名稱An Introduction to the Geometry and Topology of Fluid Flows讀者反饋




書目名稱An Introduction to the Geometry and Topology of Fluid Flows讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:20:56 | 只看該作者
An Introduction to the Geometry and Topology of Fluid Flows
板凳
發(fā)表于 2025-3-22 03:33:28 | 只看該作者
https://doi.org/10.1007/978-3-322-92509-1present geometrical formulations are successful for all the problems considered here and give insight into deep background common to the diverse physical systems. Further, the geometrical formulation opens a new approach to various dynamical systems.
地板
發(fā)表于 2025-3-22 07:32:21 | 只看該作者
Elements of Classical Knot Theoryudy of knots in the usual 3D space .. or ... It also designates knot theory before 1984. In section 1 we describe the basic facts: curves in 3D space, isotopies, knots, links and knot types. We then proceed to knot diagrams and braids. Finally we introduce the useful notion of tangle due to John Con
5#
發(fā)表于 2025-3-22 12:40:57 | 只看該作者
Introduction to a Geometrical Theory of Fluid Flows and Dynamical Systemsmely it is invariant under a group transformation, and further that the group manifold is endowed with a Riemannian metric. The basic ideas and tools are described, and application to various physical systems are considered: (i) free rotation of a rigid body; (ii) geodesic equation and KdV equation
6#
發(fā)表于 2025-3-22 14:25:40 | 只看該作者
7#
發(fā)表于 2025-3-22 17:37:15 | 只看該作者
Topological Features Of Inviscid Flowsmetric properties of the fluid. Focusing first on steady Euler fields, we outline known results, giving special attention to the Beltrami fields and the contemporary topological techniques required to elucidate their dynamical features. We also propose a topological perspective for understanding the
8#
發(fā)表于 2025-3-22 21:59:04 | 只看該作者
Geometric and Topological Aspects of Vortex Motionen fields and conservation laws, we discuss geometric aspects of vortex filament motion (intrinsic equations, connections with integrable dynamics and extension to higher dimensional manifolds) and the topological interpretation of kinetic helicity in terms of linking numbers. We recall basic result
9#
發(fā)表于 2025-3-23 05:03:11 | 只看該作者
Measures of Topological Structure in Magnetic Fieldsstructure can be quantified using topological invariants. While topological quantities obey conservation laws in systems with no resistivity and simple boundary conditions, in more general circumstances they can change in time as the physical system evolves. Topological structure is often thought of
10#
發(fā)表于 2025-3-23 07:30:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 02:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
普兰县| 固安县| 波密县| 文安县| 叙永县| 成安县| 奎屯市| 泾阳县| 南雄市| 黔西| 上虞市| 贞丰县| 景德镇市| 临澧县| 双牌县| 濮阳县| 宜宾市| 绥德县| 杭州市| 昭苏县| 治县。| 阜阳市| 屏东市| 湖州市| 东乌珠穆沁旗| 定边县| 马边| 襄城县| 邯郸县| 普安县| 武功县| 东阳市| 泰宁县| 库伦旗| 马边| 清新县| 老河口市| 西昌市| 察哈| 光山县| 陆良县|