找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Two-Dimensional Quantum Field Theory with (0,2) Supersymmetry; Ilarion V. Melnikov Book 2019 Springer Nature Switzerlan

[復(fù)制鏈接]
樓主: gloomy
11#
發(fā)表于 2025-3-23 13:19:05 | 只看該作者
Ilarion V. MelnikovFirst introductory text on the subject matter.Self-contained, tutorial presentation at the graduate level.Contains exercices and detailed discussions of relevant mathematical notions
12#
發(fā)表于 2025-3-23 16:02:08 | 只看該作者
13#
發(fā)表于 2025-3-23 18:37:18 | 只看該作者
Die althochdeutschen poetischen Denkm?lerIn this chapter we introduce a number of notational conventions, describe our primary object of study—the (0,2) supersymmetry algebra, and give a Lagrangian field realization of this structure.
14#
發(fā)表于 2025-3-23 23:19:52 | 只看該作者
15#
發(fā)表于 2025-3-24 03:38:05 | 只看該作者
(0,2) Fundamentals,In this chapter we introduce a number of notational conventions, describe our primary object of study—the (0,2) supersymmetry algebra, and give a Lagrangian field realization of this structure.
16#
發(fā)表于 2025-3-24 10:28:48 | 只看該作者
Landau-Ginzburg Theories,In this chapter we study the simplest large class of (0,2) QFTs: the (0,2) Landau-Ginzburg theories. While they are interesting in their own right, the main goal is to introduce useful notions relevant to general (0,2) theories in the context of these simple examples.
17#
發(fā)表于 2025-3-24 13:09:26 | 只看該作者
18#
發(fā)表于 2025-3-24 17:15:31 | 只看該作者
Conformalities,The author’s favorite introduction to the subject is reference Ginsparg (Applied conformal field theory. .). We also give an elementary discussion of conformal perturbation theory. This notion is at the heart of much of what we discuss in the rest of the book.
19#
發(fā)表于 2025-3-24 20:47:27 | 只看該作者
20#
發(fā)表于 2025-3-24 23:14:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-1 06:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
锦州市| 合川市| 安新县| 玉田县| 大厂| 桓台县| 涟源市| 清徐县| 宾川县| 金川县| 册亨县| 漳浦县| 托克托县| 尚志市| 浪卡子县| 孝昌县| 商南县| 商丘市| 西昌市| 崇明县| 青神县| 桦甸市| 长寿区| 榆中县| 金坛市| 康马县| 金平| 济南市| 阜康市| 郑州市| 宝兴县| 专栏| 宿迁市| 内黄县| 汨罗市| 兴宁市| 道孚县| 扶沟县| 乌兰察布市| 屯留县| 靖安县|