找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Tensors and Group Theory for Physicists; Nadir Jeevanjee Textbook 20111st edition Springer Science+Business Media, LCC

[復(fù)制鏈接]
樓主: 珍珠無(wú)
21#
發(fā)表于 2025-3-25 04:07:23 | 只看該作者
22#
發(fā)表于 2025-3-25 10:56:04 | 只看該作者
23#
發(fā)表于 2025-3-25 14:52:47 | 只看該作者
Basic Representation Theory. vectors under rotations, or antisymmetric tensors under boosts). We begin by defining a representation of a group as a vector space on which that group acts, and we give many examples, using the vector spaces we met in Chap.?. and the groups we met in Chap.?.. We then discuss how to take tensor pr
24#
發(fā)表于 2025-3-25 15:59:11 | 只看該作者
The Wigner–Eckart Theorem and Other Applicationsmatrices and Dirac bilinears. We begin by discussing the perennially confusing concepts of vector operators and spherical tensors, and then unify them using the notion of a representation operator. We then use this framework to derive a generalized selection rule, from which the various quantum-mech
25#
發(fā)表于 2025-3-25 20:28:51 | 只看該作者
Textbook 20111st editiontheoretical physics and applied mathematics. A particular aim is to demystify tensors and provide a unified framework for understanding them in the context of classical and quantum physics. Connecting the component formalism prevalent in physics calculations with the abstract but more conceptual for
26#
發(fā)表于 2025-3-26 00:11:51 | 只看該作者
Governance der EU-Datenschutzpolitikanical selection rules can be derived, and we also discuss the Wigner–Eckart theorem. We conclude by showing that Dirac’s famous gamma matrices can be understood in terms of representation operators, which then immediately gives the transformation properties of the ‘Dirac bilinears’ of QED.
27#
發(fā)表于 2025-3-26 06:14:30 | 只看該作者
28#
發(fā)表于 2025-3-26 10:17:21 | 只看該作者
29#
發(fā)表于 2025-3-26 16:02:58 | 只看該作者
s ample exercises for practice of the definitions and techni.An Introduction to Tensors and Group Theory for Physicists.?provides both?an intuitive and rigorous approach to tensors and groups and their role in theoretical physics and applied mathematics. A particular aim is to demystify tensors and
30#
發(fā)表于 2025-3-26 18:10:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 00:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
博湖县| 甘孜县| 龙南县| 乐都县| 屯留县| 宜宾县| 灯塔市| 磐安县| 甘孜县| 云南省| 海晏县| 喀喇| 鄂尔多斯市| 阿尔山市| 钟祥市| 五常市| 和平区| 和龙市| 凤阳县| 曲阜市| 上饶市| 淳安县| 太仆寺旗| 永州市| 黄石市| 安化县| 崇义县| 英吉沙县| 营口市| 炉霍县| 金华市| 米泉市| 获嘉县| 陆丰市| 正镶白旗| 云安县| 汽车| 闽侯县| 织金县| 乌拉特后旗| 卓资县|