找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Tensors and Group Theory for Physicists; Nadir Jeevanjee Textbook 20111st edition Springer Science+Business Media, LCC

[復(fù)制鏈接]
樓主: 珍珠無(wú)
21#
發(fā)表于 2025-3-25 04:07:23 | 只看該作者
22#
發(fā)表于 2025-3-25 10:56:04 | 只看該作者
23#
發(fā)表于 2025-3-25 14:52:47 | 只看該作者
Basic Representation Theory. vectors under rotations, or antisymmetric tensors under boosts). We begin by defining a representation of a group as a vector space on which that group acts, and we give many examples, using the vector spaces we met in Chap.?. and the groups we met in Chap.?.. We then discuss how to take tensor pr
24#
發(fā)表于 2025-3-25 15:59:11 | 只看該作者
The Wigner–Eckart Theorem and Other Applicationsmatrices and Dirac bilinears. We begin by discussing the perennially confusing concepts of vector operators and spherical tensors, and then unify them using the notion of a representation operator. We then use this framework to derive a generalized selection rule, from which the various quantum-mech
25#
發(fā)表于 2025-3-25 20:28:51 | 只看該作者
Textbook 20111st editiontheoretical physics and applied mathematics. A particular aim is to demystify tensors and provide a unified framework for understanding them in the context of classical and quantum physics. Connecting the component formalism prevalent in physics calculations with the abstract but more conceptual for
26#
發(fā)表于 2025-3-26 00:11:51 | 只看該作者
Governance der EU-Datenschutzpolitikanical selection rules can be derived, and we also discuss the Wigner–Eckart theorem. We conclude by showing that Dirac’s famous gamma matrices can be understood in terms of representation operators, which then immediately gives the transformation properties of the ‘Dirac bilinears’ of QED.
27#
發(fā)表于 2025-3-26 06:14:30 | 只看該作者
28#
發(fā)表于 2025-3-26 10:17:21 | 只看該作者
29#
發(fā)表于 2025-3-26 16:02:58 | 只看該作者
s ample exercises for practice of the definitions and techni.An Introduction to Tensors and Group Theory for Physicists.?provides both?an intuitive and rigorous approach to tensors and groups and their role in theoretical physics and applied mathematics. A particular aim is to demystify tensors and
30#
發(fā)表于 2025-3-26 18:10:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 00:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
连南| 柯坪县| 许昌县| 巴中市| 巴中市| 洪泽县| 札达县| 买车| 南漳县| 汝阳县| 南汇区| 和顺县| 临颍县| 乌拉特中旗| 陆河县| 新津县| 伊川县| 喀什市| 涟水县| 阿图什市| 永顺县| 宝山区| 东兴市| 石阡县| 清流县| 蒙山县| 志丹县| 长岛县| 吴旗县| 秦安县| 运城市| 普兰店市| 南川市| 凉城县| 高安市| 炎陵县| 莲花县| 上栗县| 南开区| 孝义市| 马鞍山市|