找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Tensors and Group Theory for Physicists; Nadir Jeevanjee Textbook 20111st edition Springer Science+Business Media, LCC

[復制鏈接]
樓主: 珍珠無
21#
發(fā)表于 2025-3-25 04:07:23 | 只看該作者
22#
發(fā)表于 2025-3-25 10:56:04 | 只看該作者
23#
發(fā)表于 2025-3-25 14:52:47 | 只看該作者
Basic Representation Theory. vectors under rotations, or antisymmetric tensors under boosts). We begin by defining a representation of a group as a vector space on which that group acts, and we give many examples, using the vector spaces we met in Chap.?. and the groups we met in Chap.?.. We then discuss how to take tensor pr
24#
發(fā)表于 2025-3-25 15:59:11 | 只看該作者
The Wigner–Eckart Theorem and Other Applicationsmatrices and Dirac bilinears. We begin by discussing the perennially confusing concepts of vector operators and spherical tensors, and then unify them using the notion of a representation operator. We then use this framework to derive a generalized selection rule, from which the various quantum-mech
25#
發(fā)表于 2025-3-25 20:28:51 | 只看該作者
Textbook 20111st editiontheoretical physics and applied mathematics. A particular aim is to demystify tensors and provide a unified framework for understanding them in the context of classical and quantum physics. Connecting the component formalism prevalent in physics calculations with the abstract but more conceptual for
26#
發(fā)表于 2025-3-26 00:11:51 | 只看該作者
Governance der EU-Datenschutzpolitikanical selection rules can be derived, and we also discuss the Wigner–Eckart theorem. We conclude by showing that Dirac’s famous gamma matrices can be understood in terms of representation operators, which then immediately gives the transformation properties of the ‘Dirac bilinears’ of QED.
27#
發(fā)表于 2025-3-26 06:14:30 | 只看該作者
28#
發(fā)表于 2025-3-26 10:17:21 | 只看該作者
29#
發(fā)表于 2025-3-26 16:02:58 | 只看該作者
s ample exercises for practice of the definitions and techni.An Introduction to Tensors and Group Theory for Physicists.?provides both?an intuitive and rigorous approach to tensors and groups and their role in theoretical physics and applied mathematics. A particular aim is to demystify tensors and
30#
發(fā)表于 2025-3-26 18:10:12 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-19 02:36
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
大兴区| 庄河市| 周口市| 平谷区| 呈贡县| 麻江县| 通城县| 汾西县| 鲜城| 谢通门县| 靖远县| 华阴市| 凭祥市| 阳曲县| 姚安县| 漯河市| 青阳县| 大竹县| 定日县| 门源| 寿宁县| 安平县| 二连浩特市| 通江县| 宜阳县| 无为县| 明溪县| 呼伦贝尔市| 蒙山县| 长寿区| 南靖县| 岑巩县| 南华县| 额敏县| 泊头市| 新沂市| 嘉黎县| 定日县| 札达县| 江川县| 龙游县|