找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Riemann Surfaces; Terrence Napier,Mohan Ramachandran Textbook 2012 Springer Science+Business Media, LCC 2012 DeRham-Hod

[復(fù)制鏈接]
樓主: Extraneous
11#
發(fā)表于 2025-3-23 12:08:38 | 只看該作者
Uniformization and Embedding of Riemann Surfaces.??, . Δ={.∈?||.|<1}..The second goal of this chapter is the fact that every Riemann surface?. may be obtained by holomorphic attachment of tubes at elements of a locally finite sequence of coordinate disks in a domain in??.. In particular, for . compact, this allows one to form a canonical homology basis.
12#
發(fā)表于 2025-3-23 15:45:35 | 只看該作者
Entwicklung des Untersuchungsmodells,s at a point, and to ., both of which are important objects in complex analysis and Riemann surface theory. We also consider homology groups, which are essentially Abelian versions of the fundamental group, and cohomology groups, which are groups that are dual to the homology groups.
13#
發(fā)表于 2025-3-23 20:23:50 | 只看該作者
14#
發(fā)表于 2025-3-24 00:48:32 | 只看該作者
15#
發(fā)表于 2025-3-24 02:36:23 | 只看該作者
16#
發(fā)表于 2025-3-24 10:10:46 | 只看該作者
17#
發(fā)表于 2025-3-24 11:07:12 | 只看該作者
18#
發(fā)表于 2025-3-24 16:46:55 | 只看該作者
https://doi.org/10.1007/978-3-663-04680-6 on second countability of Riemann surfaces, and analogues of the Mittag-Leffler theorem and the Runge approximation theorem for open Riemann surfaces. Viewing holomorphic functions as solutions of the homogeneous Cauchy–Riemann equation . in?? allows one to very efficiently obtain their basic prope
19#
發(fā)表于 2025-3-24 22:23:06 | 只看該作者
https://doi.org/10.1007/978-3-663-04680-6ine bundle. We first consider the basic properties of holomorphic line bundles as well as those of sheaves and divisors. We then proceed with a discussion of the solution of the inhomogeneous Cauchy–Riemann equation with .. estimates in this more general setting. In this setting, there is a natural
20#
發(fā)表于 2025-3-25 01:44:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 10:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
明光市| 卢湾区| 高平市| 三亚市| 贵德县| 乐都县| 会同县| 南投县| 太保市| 元阳县| 洛隆县| 武宣县| 太和县| 玉林市| 苏尼特右旗| 疏勒县| 三台县| 桦南县| 长春市| 南江县| 和龙市| 蒲江县| 翼城县| 宜昌市| 陇南市| 江永县| 肥城市| 镇康县| 平顶山市| 天水市| 林州市| 南开区| 郁南县| 桂平市| 桃园县| 全椒县| 鄢陵县| 衡东县| 清原| 灵武市| 萍乡市|