找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Proofs with Set Theory; Daniel Ashlock,Colin Lee Book 2020 Springer Nature Switzerland AG 2020

[復(fù)制鏈接]
樓主: 水平
11#
發(fā)表于 2025-3-23 12:45:11 | 只看該作者
12#
發(fā)表于 2025-3-23 15:15:40 | 只看該作者
Paradoxes and Axiomatic Set Theory,pter seeks to provide a solid introduction to the subject matter for students first encountering axiomatic set theory it is by no means the most exhaustive or authoritative text. Students interested in a more comprehensive discussion of axiomatic set theory will find . by Robert R. Stoll an excellent resource.
13#
發(fā)表于 2025-3-23 21:58:33 | 只看該作者
978-3-031-01298-3Springer Nature Switzerland AG 2020
14#
發(fā)表于 2025-3-23 23:43:40 | 只看該作者
Synthesis Lectures on Mathematics & Statisticshttp://image.papertrans.cn/a/image/155439.jpg
15#
發(fā)表于 2025-3-24 04:04:39 | 只看該作者
16#
發(fā)表于 2025-3-24 08:36:13 | 只看該作者
Die Weltwirtschaft der BaumwolleWhile every reader of this text is likely familiar with functions such as a quadratic function like .(x) = x. + 2x + 1, this is likely a student’s first real introduction to . (or .). In more advanced mathematics the set theoretic definition of functions is used as the default definition of a function.
17#
發(fā)表于 2025-3-24 12:43:12 | 只看該作者
18#
發(fā)表于 2025-3-24 17:43:18 | 只看該作者
19#
發(fā)表于 2025-3-24 22:44:06 | 只看該作者
20#
發(fā)表于 2025-3-25 01:13:28 | 只看該作者
Quantified Predicates, Rules of Inference, and Arguments,This chapter introduces quantified predicates and rules of inference. Combined with the previous chapter, a firm grasp of these concepts are the major tools needed for most sorts of logical arguments.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 22:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
定结县| 名山县| 来安县| 尼勒克县| 玉林市| 遂川县| 桦川县| 南江县| 晋州市| 巨鹿县| 苍梧县| 垫江县| 洛浦县| 织金县| 两当县| 文安县| 米易县| 竹溪县| 高淳县| 宜黄县| 昌江| 商城县| 三门县| 本溪| 远安县| 天柱县| 雅江县| 浦江县| 全州县| 枣强县| 北票市| 保山市| 皮山县| 台安县| 安义县| 同江市| 鸡东县| 汤阴县| 丰都县| 普宁市| 石渠县|