找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Proofs with Set Theory; Daniel Ashlock,Colin Lee Book 2020 Springer Nature Switzerland AG 2020

[復(fù)制鏈接]
樓主: 水平
11#
發(fā)表于 2025-3-23 12:45:11 | 只看該作者
12#
發(fā)表于 2025-3-23 15:15:40 | 只看該作者
Paradoxes and Axiomatic Set Theory,pter seeks to provide a solid introduction to the subject matter for students first encountering axiomatic set theory it is by no means the most exhaustive or authoritative text. Students interested in a more comprehensive discussion of axiomatic set theory will find . by Robert R. Stoll an excellent resource.
13#
發(fā)表于 2025-3-23 21:58:33 | 只看該作者
978-3-031-01298-3Springer Nature Switzerland AG 2020
14#
發(fā)表于 2025-3-23 23:43:40 | 只看該作者
Synthesis Lectures on Mathematics & Statisticshttp://image.papertrans.cn/a/image/155439.jpg
15#
發(fā)表于 2025-3-24 04:04:39 | 只看該作者
16#
發(fā)表于 2025-3-24 08:36:13 | 只看該作者
Die Weltwirtschaft der BaumwolleWhile every reader of this text is likely familiar with functions such as a quadratic function like .(x) = x. + 2x + 1, this is likely a student’s first real introduction to . (or .). In more advanced mathematics the set theoretic definition of functions is used as the default definition of a function.
17#
發(fā)表于 2025-3-24 12:43:12 | 只看該作者
18#
發(fā)表于 2025-3-24 17:43:18 | 只看該作者
19#
發(fā)表于 2025-3-24 22:44:06 | 只看該作者
20#
發(fā)表于 2025-3-25 01:13:28 | 只看該作者
Quantified Predicates, Rules of Inference, and Arguments,This chapter introduces quantified predicates and rules of inference. Combined with the previous chapter, a firm grasp of these concepts are the major tools needed for most sorts of logical arguments.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 22:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东至县| 交城县| 胶南市| 阳高县| 巨鹿县| 南丹县| 措勤县| 丰城市| 柯坪县| 永兴县| 当阳市| 梁河县| 玉林市| 会东县| 崇义县| 吕梁市| 六盘水市| 韶山市| 台中市| 永胜县| 贺州市| 苏州市| 姚安县| 民权县| 梁河县| 花垣县| 固安县| 瑞金市| 泰安市| 武清区| 达孜县| 沂源县| 鄱阳县| 株洲县| 昌平区| 河北省| 泌阳县| 南康市| 苏尼特左旗| 神木县| 浙江省|