找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Multivariate Techniques for Social and Behavioural Sciences; Spencer Bennett,David Bowers Book 1976 Spencer Bennett and

[復(fù)制鏈接]
查看: 31672|回復(fù): 43
樓主
發(fā)表于 2025-3-21 17:50:01 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱An Introduction to Multivariate Techniques for Social and Behavioural Sciences
影響因子2023Spencer Bennett,David Bowers
視頻videohttp://file.papertrans.cn/156/155383/155383.mp4
圖書封面Titlebook: An Introduction to Multivariate Techniques for Social and Behavioural Sciences;  Spencer Bennett,David Bowers Book 1976 Spencer Bennett and
Pindex Book 1976
The information of publication is updating

書目名稱An Introduction to Multivariate Techniques for Social and Behavioural Sciences影響因子(影響力)




書目名稱An Introduction to Multivariate Techniques for Social and Behavioural Sciences影響因子(影響力)學(xué)科排名




書目名稱An Introduction to Multivariate Techniques for Social and Behavioural Sciences網(wǎng)絡(luò)公開度




書目名稱An Introduction to Multivariate Techniques for Social and Behavioural Sciences網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱An Introduction to Multivariate Techniques for Social and Behavioural Sciences被引頻次




書目名稱An Introduction to Multivariate Techniques for Social and Behavioural Sciences被引頻次學(xué)科排名




書目名稱An Introduction to Multivariate Techniques for Social and Behavioural Sciences年度引用




書目名稱An Introduction to Multivariate Techniques for Social and Behavioural Sciences年度引用學(xué)科排名




書目名稱An Introduction to Multivariate Techniques for Social and Behavioural Sciences讀者反饋




書目名稱An Introduction to Multivariate Techniques for Social and Behavioural Sciences讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:41:48 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:18:52 | 只看該作者
地板
發(fā)表于 2025-3-22 07:03:09 | 只看該作者
https://doi.org/10.1007/978-3-663-13503-6 rather different problem, that in which several groups of objects or persons are measured on the same set of variables. The principal question to be answered is can the groups be differentiated on the basis of the measures obtained from the set of variables? This chapter describes a number of ways of approaching this and other related problems.
5#
發(fā)表于 2025-3-22 12:39:23 | 只看該作者
6#
發(fā)表于 2025-3-22 14:44:41 | 只看該作者
Factor Analysis: the Centroid Method,uous and reasonably normal (at least they should not be bimodal or markedly skewed); discontinuous variables will be discussed further in Chapter 7. Regression should be linear, and samples should be large (at least several hundred) to ensure reliability of the resulting correlations.
7#
發(fā)表于 2025-3-22 17:02:12 | 只看該作者
Principal Factor Analysis,ds of analysis, principal factor analysis and principal component analysis. The approach of the two methods is similar and their aim, to aid interpretation of the underlying structure of the interrelationships between variables, is the same. But there is in fact, as we shall see later, a fundamental difference between the two methods.
8#
發(fā)表于 2025-3-22 23:56:11 | 只看該作者
9#
發(fā)表于 2025-3-23 03:04:33 | 只看該作者
https://doi.org/10.1007/978-3-663-02265-7the data resulting from such investigations is not in a metric or quantitative form. Multidimensional scaling is a technique which enables us to convert these non-metric measures into a form suitable for the application of those methods of factor analysis discussed previously.
10#
發(fā)表于 2025-3-23 09:16:31 | 只看該作者
Multidimensional Scaling,the data resulting from such investigations is not in a metric or quantitative form. Multidimensional scaling is a technique which enables us to convert these non-metric measures into a form suitable for the application of those methods of factor analysis discussed previously.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 14:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿克| 偏关县| 启东市| 衢州市| 共和县| 东阿县| 潞城市| 涪陵区| 婺源县| 东光县| 南宁市| 汉沽区| 红桥区| 永靖县| 靖边县| 申扎县| 贵州省| 涟水县| 治多县| 丹江口市| 高青县| 阿拉善盟| 怀来县| 富平县| 酒泉市| 湖南省| 三穗县| 金溪县| 曲靖市| 阳原县| 余江县| 大埔区| 西畴县| 临潭县| 平谷区| 海盐县| 郸城县| 万州区| 湖南省| 申扎县| 清镇市|