找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Mathematical Cryptography; Jeffrey Hoffstein,Jill Pipher,Joseph H. Silverman Textbook 2014Latest edition Springer Scien

[復(fù)制鏈接]
樓主: 空格
21#
發(fā)表于 2025-3-25 03:45:59 | 只看該作者
22#
發(fā)表于 2025-3-25 08:37:53 | 只看該作者
Integer Factorization and RSA,te powers ., but difficult to recover the exponent?. if you know only the values of?. and?.. An essential result that we used to analyze the security of Diffie–Hellman and Elgamal is Fermat’s little theorem (Theorem?1.24),
23#
發(fā)表于 2025-3-25 11:51:21 | 只看該作者
Digital Signatures, analogous to the purpose of a pen-and-ink signature on a physical document. It is thus interesting that the tools used to construct digital signatures are very similar to the tools used to construct asymmetric ciphers.
24#
發(fā)表于 2025-3-25 18:58:40 | 只看該作者
25#
發(fā)表于 2025-3-25 23:47:19 | 只看該作者
Elliptic Curves and Cryptography,ryptographic applications. For additional reading, there are a number of survey articles and books devoted to elliptic curve cryptography [14, 68, 81, 135], and many others that describe the number theoretic aspects of the theory of elliptic curves, including [25, 65, 73, 74, 136, 134, 138].
26#
發(fā)表于 2025-3-26 04:13:59 | 只看該作者
Additional Topics in Cryptography,h and in sufficient depth to enable the reader to understand both the underlying mathematical principles and how they are applied in cryptographic constructions. Unfortunately, in achieving this laudable goal, we have now reached the end of a hefty textbook with many important cryptographic topics left untouched.
27#
發(fā)表于 2025-3-26 08:04:17 | 只看該作者
Jeffrey Hoffstein,Jill Pipher,Joseph H. SilvermanNew edition extensively revised and updated.Includes new material on lattice-based signatures, rejection sampling, digital cash, and homomorphic encryption.Presents a detailed introduction to elliptic
28#
發(fā)表于 2025-3-26 11:37:23 | 只看該作者
29#
發(fā)表于 2025-3-26 14:27:23 | 只看該作者
https://doi.org/10.1007/978-1-4939-1711-2coding theory; digital signatures; discrete logarithms; elliptic curves; information theory; lattices and
30#
發(fā)表于 2025-3-26 18:59:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-3 04:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
屯昌县| 抚松县| 大洼县| 龙江县| 丹阳市| 彭山县| 焉耆| 红原县| 中西区| 南郑县| 台北县| 读书| 左权县| 双城市| 安丘市| 广丰县| 桦川县| 临汾市| 申扎县| 宜阳县| 鸡西市| 烟台市| 阿尔山市| 刚察县| 滁州市| 旬阳县| 威海市| 榆中县| 增城市| 武安市| 临清市| 曲阳县| 佛教| 喀喇沁旗| 高密市| 原平市| 盱眙县| 靖西县| 湘阴县| 正安县| 海晏县|