找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Manifolds; Loring W. Tu Textbook 2011Latest edition Springer Science+Business Media, LLC 2011 De Rham Theory.Euclidean

[復(fù)制鏈接]
查看: 22154|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:37:25 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱An Introduction to Manifolds
影響因子2023Loring W. Tu
視頻videohttp://file.papertrans.cn/156/155329/155329.mp4
發(fā)行地址Many historical references have been added to the bibliography Hints and solutions are provided for selected exercises making this book ideal for self-study Further improves upon an already successful
學(xué)科分類Universitext
圖書封面Titlebook: An Introduction to Manifolds;  Loring W. Tu Textbook 2011Latest edition Springer Science+Business Media, LLC 2011 De Rham Theory.Euclidean
影響因子Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory.In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems.This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, ‘Introduction to Manifolds‘ is also an excellent foundat
Pindex Textbook 2011Latest edition
The information of publication is updating

書目名稱An Introduction to Manifolds影響因子(影響力)




書目名稱An Introduction to Manifolds影響因子(影響力)學(xué)科排名




書目名稱An Introduction to Manifolds網(wǎng)絡(luò)公開度




書目名稱An Introduction to Manifolds網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱An Introduction to Manifolds被引頻次




書目名稱An Introduction to Manifolds被引頻次學(xué)科排名




書目名稱An Introduction to Manifolds年度引用




書目名稱An Introduction to Manifolds年度引用學(xué)科排名




書目名稱An Introduction to Manifolds讀者反饋




書目名稱An Introduction to Manifolds讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:50:40 | 只看該作者
https://doi.org/10.1007/978-1-4419-7400-6De Rham Theory; Euclidean spaces; Lie algebras; Lie groups; algebraic geometry; degeneracy loci; different
板凳
發(fā)表于 2025-3-22 03:53:15 | 只看該作者
地板
發(fā)表于 2025-3-22 05:22:45 | 只看該作者
Loring W. TuMany historical references have been added to the bibliography Hints and solutions are provided for selected exercises making this book ideal for self-study Further improves upon an already successful
5#
發(fā)表于 2025-3-22 09:27:49 | 只看該作者
6#
發(fā)表于 2025-3-22 13:29:56 | 只看該作者
7#
發(fā)表于 2025-3-22 17:26:35 | 只看該作者
8#
發(fā)表于 2025-3-22 21:26:06 | 只看該作者
9#
發(fā)表于 2025-3-23 04:39:17 | 只看該作者
10#
發(fā)表于 2025-3-23 07:45:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 06:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
麻江县| 彝良县| 民和| 略阳县| 宁远县| 盖州市| 新龙县| 客服| 阿图什市| 五台县| 镇宁| 阿克陶县| 金阳县| 秭归县| 新乡县| 陵川县| 诏安县| 保靖县| 漳州市| 盐池县| 宁南县| 营口市| 永寿县| 潍坊市| 乌拉特前旗| 敦煌市| 凤山县| 五常市| 乌苏市| 砀山县| 南涧| 双桥区| 阿尔山市| 安化县| 道真| 河北区| 蛟河市| 苏尼特右旗| 崇信县| 沈阳市| 景谷|